Skip to main content
Log in

Geological features and deformational ages of the basal thrust belt of the miaowan ophiolite in the southern Huangling anticline and its tectonic implications

  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

The stratigraphic, structural and metamorphic features of the basal thrust belt of the ca. 1.0 Ga Miaowan (庙湾) ophiolite in the southern Huangling (黄陵) anticline, show that it can be divided into three tectono-lithostratigraphic units from north to south: mélange/wildflysch rock units, flysch rock units, and sedimentary rock units of the autochthonous (in situ) stable continental margin. The three units underwent thrust-related deformation during emplacement of the Miaowan ophiolitic nappe, with kinematic indicators indicating movement from the NNE to SSW, with the metamorphic grade reaching greenschist-amphibolite facies. LA-ICP-MS U-Pb geochronology of zircons from granite pebbles in the basal thrust-related wildflysch yield ages of 859±26, 861±12 and 871±16 Ma; whereas monzonitic granite clasts yield an age of 813±14 Ma. This indicates that the formation age of the basal thrust belt is not older than 813±14 Ma, and is earlier than the earliest formation time of the majority of the Neoproterozoic Huangling granitoid intrusive complex, which did not experience penetrative ductile deformation. These results suggest that the northern margin of the Yangtze craton was involved in collisional tectonics that continued past 813 Ma. This may be related to the amalgamation of the Yangtze craton with the Rodinia supercontinent. Through comparative study of lithology, zircon geochronology, REE patterns between granodiorite and tonalite pebbles in the basal thrust-zone conglomerate, it can be concluded that the pebbles are the most similar to the Huanglingmiao (黄陵庙) rock-mass (unit), implying that they may have come from Huanglingmiao rock-mass. Zircon cores yield xenocrystic ages of 2 074±120 Ma, suggesting that the protolith of the Neoproterozoic Huangling granitoid intrusive complex may have originated from partial melting of older basement rocks, that is to say there may be Paleoproterozoic crystalline basement in the southern Huangling anticline. The ages of xenocrystic zircons in the granite pebbles in the basal-thrust conglomerate/wildflysch show a correlation with the age spectra from Australia, implying that the terrain that collided with the northern margin of the Yangtze craton and emplaced the Miaowan ophiolite at ca. 813 Ma may have been derived from the Australian segment of Rodinia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References Cited

  • Chapple, W. M., 1978. Mechanics of Thin-Skinned Fold-and-Thrust Belts. Geological Society of American Bulletin, 89: 1189–1198

    Article  Google Scholar 

  • Chen, Y. L., Luo, Z. H., Liu, C., 2001. New Recognition of Kangding-Mianning Metamorphic Complexes from Sichuan, Western Yangtze Craton: Evidence from Nd Isotopic Compositon. Earth Science-Journal of China University of Geosciences, 26(3): 279–285 (in Chinese with English Abstract)

    Google Scholar 

  • Condie, K. C., Belousova, E., Griffin, W. L., et al., 2009. Granitoid Events in Space and Time: Constraints from Igneous and Detrital Zircon Age Spectra. Gondwana Research, 15: 228–242

    Article  Google Scholar 

  • Davis, D., Suppe, J., Dahlen, F. A., 1983. Mechanics of Fold-and-Thrust Belts and Accretionary Wedges. Journal of Geophysical Research, 88(B2): 1153–1172, doi:10.1029/JB088iB02p01153

    Article  Google Scholar 

  • Feng, D. Y., Li, Z. C., Zhang, Z. C., 1991. Intrusive Ages and Isotopic Characteristics of Massives in the South of Huangling Granitoids. Hubei Geology, 5(2): 1–12 (in Chinese with English Abstract)

    Google Scholar 

  • Fu, G. Q., Yuan, H. H., Li, S. L., 1993. Discovery of Archean Granite-Greenstone Terrain of the Northern Huangling Block, Western Hubei Province, China. J. Mineral. Petrol., 13(1): 5–13 (in Chinese with English Abstract)

    Google Scholar 

  • Gao, S., Ling, W. L., Qiu, Y., et al., 1999. Contrasting Geochemical and Sm-Nd Isotopic Compositions of Archean Metasediments from the Kongling High-Grade Terrain of the Yangtze Craton: Evidence for Cratonic Evolution and Redistribution of REE during Crustal Anatexis. Geochimica et Cosmochimica Acta, 63(13–14): 2071–2088

    Article  Google Scholar 

  • Gao, S., Qiu, Y. M., Ling, W. L., et al., 2001. The Single Grain Zircon SHRIMP U-Pb Geochronology from Kongling High-Grade Metamorphic Terrain-Discovery of >3.2 Ga Continental Crust in Yangtze Craton. Science in China (Series D), 31(1): 27–35 (in Chinese)

    Google Scholar 

  • Golonka, J., 2004. Plate Tectonic Evolution of the Southern Margin of Eurasia in the Mesozoic and Cenozoic. Tectonophysics, 381(1–4): 235–273

    Article  Google Scholar 

  • Hans, L., 2010. Jura, Alps and the Boundary of the Adria Subplate. Tectonophysics, 484(1–4): 223–239

    Google Scholar 

  • Hinton, R. W., Upton, B. G. J., 1991. The Chemistry of Zircon: Variations within and between Large Crystals from Syenite and Alkali Basalt Xenoliths. Geoehimica et Cosmoehimica Acta, 55(11): 3287–3302

    Article  Google Scholar 

  • Hoskin, P. W. O., Ireland, T. I., 2000. Rare Earth Element Chemistry of Zircon and Its Use as a Provenance Indicator. Geology, 28(7): 627–630

    Article  Google Scholar 

  • Jiang, J. S., 1986. Isotopic Geochronology and Crustal Evolution of Huangling Metamorphic Terrain. Journal of Changchun College of Geology, 3: 1–11 (in Chinese with English Abstract)

    Google Scholar 

  • Li, X. H., Liang, X. R., Sun, M., et al., 2000. Geochronology and Geochemistry of Single-Grain Zircons: Simultaneous In-Situ Analysis of U-Pb Age and Trace Elements by LAM-ICP-MS. Eur. J. Mineral., 12: 1015–1024, doi:10.1127/0935-1221/2000/0012-1015

    Google Scholar 

  • Li, X. H., Wang, X. C., Li, W. X., et al., 2008. Petrogenesis and Tectonic Significance of Neoproterozoic Basaltic Rocks in South China: From Orogenesis to Intracontinental Rifting. Geochimica, 37(4): 382–398 (in Chinese with English Abstract)

    Google Scholar 

  • Li, Y. L., Zhou, H. W., Li, X. H., et al., 2007. 40Ar-39Ar Plateau Ages of Biotite and Amphibole from Tonalite of Huangling Granitoids and Their Cooling Curve. Acta Petrologica Sinica, 23(5): 1067–1074 (in Chinese with English Abstract)

    Google Scholar 

  • Li, Z. C., Wang, G. H., Zhang, Z. C., 2002. Isotopic Age Spectrum of the Huangling Granitic Batholith, Western Hubei. Geology and Mineral Resources of South China, 3: 19–28 (in Chinese with English Abstract)

    Google Scholar 

  • Li, Z. X., Li, X. H., Kinny, P. D., et al., 2003. Geochronology of Neoproterozoic Syn-Rift Magmatism in the Yangtze Craton, South China and Correlations with Other Continents: Evidence for a Mantle Superplume that Broke-Up Rodinia. Precambrian Research, 122(1–4): 85–109

    Article  Google Scholar 

  • Ling, W. L., Gao, S., Zhang, B. R., et al., 2000. Late Paleoproterozoic Tectonic Thermal Event within the Yangtze Continental Interior and Its Evolution. Chinese Science Bulletin, 45(21): 2343–2348 (in Chinese)

    Google Scholar 

  • Ling, W. L., Gao, S., Zhang, B. R., et al., 2003. Neoproterozoic Tectonic Evolution of the Northwestern Yangtze Craton, South China: Implications for Amalgamation and Breakup of the Rodinia Supercontinent. Precambrian Research, 122(1–4): 111–140

    Article  Google Scholar 

  • Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1–2): 34–43

    Article  Google Scholar 

  • Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010a. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons of Mantle Xenoliths. Journal of Petrology, 51(1–2): 537–571, doi:10.1093/petrology/egp082

    Article  Google Scholar 

  • Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010b. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535–1546, doi:10.1007/s11434-010-3052-4

    Article  Google Scholar 

  • Ludwig, K. R., 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley

    Google Scholar 

  • Ma, D. Q., Du, S. H., Xiao, Z. F., 2002. The Origin of Huangling Granite Batholith. Acta Petrologica et Mineralogica, 21(2): 151–161 (in Chinese with English Abstract)

    Google Scholar 

  • Peng, M., Wu, Y. B., Wang, J., et al., 2009. Paleoproterozoic Mafic Dyke from Kongling Terrain in the Yangtze Craton and Its Implication. Chinese Science Bulletin, 54(5): 641–647, doi:10.1007/s11434-008-0558-0 (in Chinese)

    Google Scholar 

  • Peng, S. B., Li, C. N., Kusky, T. M., et al., 2010. Discovery and Its Tectonic Significance of the Proterozoic Miaowan Ophiolites in the Southern Huangling Anticline, Western Hubei, China. Geological Bulletin of China, 29(1): 8–20 (in Chinese with English Abstract)

    Google Scholar 

  • Peng, S. B., Kusky, T. M., Jiang, X. F., et al., 2012. Geology, Geochemistry, and Geochronology of the Miaowan Ophiolite, Yangtze Craton: Implications for South China’s Amalgamation History with the Rodinian Supercontinent. Gondwana Research, 21(2-3): 577–594, doi:10.1016/j.gr.2011.07.010

    Article  Google Scholar 

  • Peresson, H., Decker, K., 1997. The Tertiary Dynamics of the Northern Eastern Alps (Austria): Changing Palaeostresses in a Collisional Plate Boundary. Tectonophysics, 272(2–4): 125–157

    Article  Google Scholar 

  • Qiu, Y. M., Gao, S., Mcnaughton, N. J., et al., 2000. First Evidence of >3.2 Ga Continental Crust in the Yangtze Craton of South China and Its Implications for Archean Crustal Evolution and Phanerozoic Tectonics. Geology, 28(1): 11–14, doi:10.1130/0091-7613(2000)028<0011:FEOGCC>2.0.CO;2

    Article  Google Scholar 

  • Rodgers, J., 1990. Fold-and-Thrust Belts in Sedimentary, Part I: Typical Examples. American Journal of Science, 290: 321–359, doi:10.2475/ajs.290.4.321

    Article  Google Scholar 

  • Rodgers, J., 1991. Fold-and-Thrust Belts in Sedimentary, Part II: Other Examples, Especially Variants. American Journal of Science, 291: 825–886, doi:10.2475/ajs.291.9.825

    Article  Google Scholar 

  • Samson, S. D., Coler, D. G., Speer, J. A., 1995. Geochemical and Nd-Sr-Pb Isotopic Composition of Alleghanian Granites of the Southern Appalachians: Origin, Tectonic Setting, and Source Characterization. Earth and Planetary Science Letters, 134(3–4): 359–376

    Article  Google Scholar 

  • Sasseville, C., Tremblay, A., Clauer, N., et al., 2008. K-Ar Age Constraints on the Evolution of Polydeformed Fold-Thrust Belts: The Case of the Northern Appalachians (Southern Quebec). Journal of Geodynamics, 45(2–3): 99–119, doi:10.1016/j.jog.2007.07.004

    Article  Google Scholar 

  • Simony, P. S., Carr, S. D., 2011. Cretaceous to Eocene Evolution of the Southeastern Canadian Cordillera: Continuity of Rocky Mountain Thrust Systems with Zones of “In-Sequence” Mid-Crustal Flow. Journal of Structural Geology, 33(9): 1417–1434

    Article  Google Scholar 

  • Song, C. Z., Liu, G. S., Niu, M. L., et al., 2002. Cenozoic Structures and Dynamics on the Northern Margin of Qinling-Dabie Orogenic Belt. Geological Bulletin of China, 21(8–9): 530–535 (in Chinese with English Abstract)

    Google Scholar 

  • Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. In: Saunders, A. D., Norry, M. J., eds., Magmatism of the Ocean Basins. Geological Society, London, Special Publications, 42: 313–345, doi:10.1144/GSL.SP.1989.042.01.19

  • Sun, X. M., Wu, G. Y., Hao, F. J., et al., 2004. Epochs and Space-Time Migrating of Meso-Cenozoic Thrust-Nappe Tectonics in the North Qinling-Dabie Orogen. Chinese Journal of Geology, 39(1): 63–76 (in Chinese with English Abstract)

    Google Scholar 

  • Thakur, V. C., 1980. Tectonics of the Central Crystallines of Western Himalaya. Tectonophysics, 62(1–2): 141–154

    Article  Google Scholar 

  • Tremblay, A., Ruffet, G., Bédard, J. H., 2011. Obduction of Tethyan-Type Ophiolites-A Case-Study from the Thetford-Mines Ophiolitic Complex, Quebec Appalachians, Canada. Lithos, 125(1-2): 10–26

    Article  Google Scholar 

  • Wang, X. F., Ma, D. Q., Chen, X. H., et al., 2001. Precambrian Evolution of the Huangling Arch, China and Its Relation to the Rodinia Breakup and Assembly. Gondwana Research, 4(4): 816–817

    Article  Google Scholar 

  • Wang, J., Liu, B. J., Pan, G. T., 2001. Neoproterozoic Rifting History of South China Significance to Rodinia Breakup. J. Mineral. Petrol., 21(3): 135–145 (in Chinese with English Abstract)

    Google Scholar 

  • Wei, Y. X., Peng, S. B., Jiang, X. F., et al., 2012. SHRIMP Zircon U-Pb Ages and Geochemical Characteristics of the Neoproterozoic Granitoids in the Huangling Anticline and Its Tectonic Setting. Journal of Earth Science, 23(5): 659–675

    Google Scholar 

  • Wiedenbeck, M., Alle, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses. Geostandards and Geoanalytical Research, 19(1): 1–23, doi:10.1111/j.1751-908X.1995.tb00147.x

    Article  Google Scholar 

  • Wu, Y. B., Chen, D. G., Xia, Q. K., et al., 2002. Trace Element Analysis of Zircons from Eclogite in Huangzhen in Dabie: Trace Element Characteristics of Eclogite-Facies Metamorphic Zircons. Chinese Science Bulletin, 47(11): 859–863 (in Chinese)

    Google Scholar 

  • Wu, Y. B., Chen, D. G., Xia, Q. K., et al., 2003. Granulite in the Dabie Mountains Huangtuling Zircon LAM-ICP-MS Trace Element Analysis and Pb-Pb Dating. Science in China (Series D), 33(1): 20–28 (in Chinese)

    Google Scholar 

  • Xie, D. N., He, M. X., Zhou, L. F., et al., 2006. Characteristics of Overthrust Structures on Northern Edge of East Qinling-Dabie Orogenic Belt and Hydrocarbon Potentials. Oil & Gas Geology, 27(1): 48–55 (in Chinese with English Abstract)

    Google Scholar 

  • Xiong, Q., Zheng, J. P., Yu, C. M., et al., 2008. Zircon U-Pb Age and Hf Isotope of Quanyishang A-Type Granite in Yichang: Signification for the Yangtze Continental Cratonization in Paleoproterozoic. Chinese Science Bulletin, 53(22): 2782–2792 (in Chinese)

    Google Scholar 

  • Ye, P. S., 2004. Ophiolites and Thrust System of Middle Lhasa Block: [Dissertation]. Chinese Academy of Geological Sciences, Beijing. 16–17 (in Chinese with English Abstract)

    Google Scholar 

  • Zhang, C. H., Song, H. L., 1997. Mesozoic Thrust Tectonic in Yanshan Intraplate Orogen and the Differences between Them and Those of Foreland Fold-and-Thrust Belt. Earth Science-Journal of China University of Geosciences, 22(1): 33–36 (in Chinese with English Abstract)

    Google Scholar 

  • Zhang, S. B., Zheng, Y. F., Wu, Y. B., et al., 2006. Zircon U-Pb Age and Hf-O Isotope Evidence for Paleoproterozoic Metamorphic Event in South China. Precambrian Research, 151(3–4): 265–288

    Article  Google Scholar 

  • Zhang, S. B., Zheng, Y. F., Zhao, Z. F., et al., 2009. Origin of TTG-Like Rocks from Anatexis of Ancient Lower Crust: Geochemical Evidence from Neoproterozoic Granitoids in South China. Lithos, 113: 347–368, doi:10.1016/j.lithos.2009.04.024

    Article  Google Scholar 

  • Zhang, S. B., Zheng, Y. F., Zhao, Z. F., 2010. Temperature Effect over Garnet Effect on Uptake of Trace Elements in Zircon of TTG-Like Rocks. Chemical Geology, 274: 108–125, doi:10.1016/j.chemgeo.2010.04.002

    Article  Google Scholar 

  • Zhao, J. H., Zhou, M. F., Zheng, J. P., 2010. Metasomatic Mantle Source and Crustal Contamination for the Formation of the Neoproterozoic Mafic Dike Swarm in the Northern Yangtze Block, South China. Lithos, 115: 177–189, doi:10.1016/j.lithos.2009.12.001

    Article  Google Scholar 

  • Zheng, Y. F., Zhang, S. B., 2007. Formation and Evolution of the Precambrian Continental Crust in South China. Chinese Science Bulletin, 52(1): 1–10 (in Chinese)

    Article  Google Scholar 

  • Zhou, Z. Y., Yang, J. X., Zhou, H. W., et al., 2007. Significance on Hubei Huangling Complex in the Rodinia Supercontinent of Evolution. Resources Environment and Engineering, 21(4): 380–384 (in Chinese with English Abstract)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songbai Peng  (彭松柏).

Additional information

This study was supported by the Postdoctoral Science Foundation (No. 20100471203), the Ministry of Land and Resources of China (No. 1212010670104), the National Natural Science Foundation of China (Nos. 91014002, 40821061, 41272242), and Ministry of Education of China (Nos. B07039, TGRC201024).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, X., Peng, S., Kusky, T.M. et al. Geological features and deformational ages of the basal thrust belt of the miaowan ophiolite in the southern Huangling anticline and its tectonic implications. J. Earth Sci. 23, 705–718 (2012). https://doi.org/10.1007/s12583-012-0289-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-012-0289-7

Key Words

Navigation