Skip to main content
Log in

Complex effective relative permittivity of soil samples from the taunus region (Germany)

  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

The most important parameter affecting ground-penetrating radar (GPR) measurements is the complex effective relative permittivity ɛ *r,eff because it controls the propagation velocity and the reflection of GPR pulses. Knowing ɛ *r,eff of soils passed through by electromagnetic waves increases accuracy in soil thickness and interface identification. Complex effective relative permittivity ɛ *r,eff r,eff jɛ *r,eff of 25 soil samples with textures ranging from loamy sand to silty clay was measured using the two-electrode parallelplate method. The measurements were conducted at defined water contents for frequencies from 1 MHz to 3 GHz. The results confirm the frequency dependence of ɛ *r,eff and show that the dielectric behavior of soil-water mixtures is a function of water content. Applying the experimental data of this study with predictions based on the empirical model by Topp et al. (1980), we find that Topp et al.’s curve tends to underestimate the real part of ɛ *r,eff measured. Along with frequency and water content, soil texture and organic matter affect soil permittivity. Moreover, the real part of ɛ *r,eff increases at higher dry bulk densities. Output from our calibration model enables us to predict ɛ *r,eff for the soil samples which were tested under the actual in situ soil water content. This results in high accuracy of soil thickness prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References Cited

  • Blume, H. P., Brümmer, G. W., Schwertmann, U., et al., 2010. Scheffer/Schachtschabel, Lehrbuch der Bodenkunde. Spektrum Akademischer Verlag, Heidelberg. 569 (in German)

    Book  Google Scholar 

  • Daniels, D. J., 2004. Ground Penetrating Radar. 2nd Edition. The Institution of Electrical Engineers, London. 726

    Google Scholar 

  • DIN ISO 11265, 1997. Bodenbeschaffenheit-Bestimmung der Spezifischen Elektrischen Leitfähigkeit. Deutsches Institut für Normung e. V., Berlin (in German)

    Google Scholar 

  • Gerber, R., 2009. Erfassung der Mächtigkeit und Verbreitung Periglaziärer Lagen im Lahn-Dill-Bergland (Rheinisches Schiefergebirge): [Dissertation]. University of Giessen, Giessen (in German)

    Google Scholar 

  • Hallikainen, M. T., Ulaby, F. T., Dobson, M. C., et al., 1985. Microwave Dielectric Behavior of Wet Soil, Part I: Empirical Models and Experimental Observations. IEEE Transactions on Geoscience and Remote Sensing, 23(1): 25–34

    Article  Google Scholar 

  • Hoekstra, P., Delaney, A., 1974. Dielectric Properties of Soils at UHF and Microwave Frequencies. Journal of Geophysical Research, 79(11): 1699–1708

    Article  Google Scholar 

  • Huisman, J. A., Hubbard, S. S., Redman, J. D., et al., 2003. Measuring Soil Water Content with Ground Penetrating Radar: A Review. Vadose Zone Journal, 2(4): 476–491

    Google Scholar 

  • Inman, D. J., Freeland, R. S., Yoder, R. E., et al., 2001. Evaluating GPR and EMI for Morphological Studies of Loessial Soils. Soil Science, 166(9): 622–630

    Article  Google Scholar 

  • Knoll, M. D., 1996. A Petrophysical Basis for Ground Penetrating Radar and very Early Time Electromagnetics: Electrical Properties of Sand-Clay Mixtures: [Dissertaion]. University of British Columbia, Vancouver

    Google Scholar 

  • Kuntze, H., 1994. Wasserbindung. In: Kuntze, H., Roeschmann, G., Schwerdtfeger, G., eds., Bodenkunde. Eugen Ulmer Verlag, Stuttgart. 162–168 (in German)

    Google Scholar 

  • Peplinski, N. R., Ulaby, F. T., Dobson, M. C., 1995. Dielectric Properties of Soils in the 0.3-1.3-GHz Range. IEEE Transactions on Geoscience and Remote Sensing, 33(3): 803–807

    Article  Google Scholar 

  • Saarenketo, T., 1998. Electrical Properties of Water in Clay and Silty Soils. Journal of Applied Geophysics, 40(1–3): 73–88

    Article  Google Scholar 

  • Salat, C., Junge, A., 2010. Dielectric Permittivity of Fine-Grained Fractions of Soil Samples from Eastern Spain at 200 MHz. Geophysics, 75(1): J1–J9

    Article  Google Scholar 

  • Schlichting, E., Blume, H. P., Stahr, K., 1995. Bodenkundliches Praktikum. Blackwell-Wissenschaftsverlag, Berlin. 295 (in German)

    Google Scholar 

  • Shang, J. Q., Scholte, J. W., Rowe, R. K., 2000. Multiple Linear Regression of Complex Permittivity of a Till at Frequency Range from 200 MHz to 400 MHz. Subsurface Sensing Technologies and Applications, 1(3): 337–35

    Article  Google Scholar 

  • Topp, G. C., Davis, J. L., Annan, A. P., 1980. Electromagnetic Determination of Soil Water Content: Measurements in Coaxial Transmission Lines. Water Resources Research, 16(3): 574–582

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katja Lauer.

Additional information

This study was supported by the German Research Foundation (DFG) (No. SFB 299).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lauer, K., Albrecht, C., Salat, C. et al. Complex effective relative permittivity of soil samples from the taunus region (Germany). J. Earth Sci. 21, 961–967 (2010). https://doi.org/10.1007/s12583-010-0149-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-010-0149-2

Key Words

Navigation