Skip to main content
Log in

Ab initio two-phase molecular dynamics on the melting curve of SiO2

  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

Ab initio two-phase molecular dynamics simulations were performed on silica at pressures of 20–160 GPa and temperatures of 2 500–6 000 K to examine its solid-liquid phase boundary. Results indicate a melting temperature (T m) of 5 900 K at 135 GPa. This is 1 100 K higher than the temperature considered for the core-mantle boundary (CMB) of about 3 800 K. The calculated melting temperature is fairly consistent with classical MD (molecular dynamics) simulations. For liquid silica, the O-O coordination number is found to be 12 along the T m and is almost unchanged with increasing pressure. The self-diffusion coefficients of O and Si atoms are determined to be 1.3×10−9–3.3×10−9 m2/s, and the viscosity is 0.02–0.03 Pa·s along the T m. We find that these transport properties depend less on pressure in the wide range up of more than 135 GPa. The eutectic temperatures in the MgO-SiO2 systems were evaluated and found to be 700 K higher than the CMB temperature, though they would decrease considerably in more realistic mantle compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Alfè, D., 2005. Melting Curve of MgO from First-Principles Simulations. Phys. Rev. Lett., 94(23): 235701

    Article  Google Scholar 

  • Alfè, D., Kresse, G., Gillan, M. J., 2000. Structure and Dynamics of Liquid Iron under Earth’s Core Conditions. Phys. Rev. B, 61(1): 132–142

    Article  Google Scholar 

  • Allen, M. J., Tildesley, D. J., 1987. Computer Simulation of Liquids. Oxford University Press, Oxford

    Google Scholar 

  • Andrault, D., Fiquet, G., Guyot, F., et al., 1998. Pressure-Induced Landau-Type Transition in Stishovite. Science, 282(5389): 720–724

    Article  Google Scholar 

  • Belonoshko, A. B., 1994. Molecular-Dynamics of MgSiO3 Perovskite at High-Pressures-Equation of State, Structure, and Melting Transition. Geochim. Cosmochim. Acta, 58(19): 4039–4047

    Article  Google Scholar 

  • Belonoshko, A. B., 2001. Molecular Dynamics Simulations of Phase Transitions and Melting MgSiO3 with the Perovskite Structure-Comment. Am. Mineral., 86(1–2): 193–194

    Google Scholar 

  • Belonoshko, A. B., Arapan, S., Martonak, R., et al., 2010. MgO Phase Diagram from First Principles in a Wide Pressure-Temperature Range. Phys. Rev. B, 81(5): 054110

    Article  Google Scholar 

  • Belonoshko, A. B., Dubrovinsky, L. S., 1995. Molecular Dynamics of Stishovite Melting. Geochim. Cosmochim. Acta, 59(9): 1883–1889

    Article  Google Scholar 

  • Belonoshko, A. B., Durbrovinsky, L. S., Dubrovinsky, N. A., 1996. A New High-Pressure Silica Phase Obtained by Molecular Dynamics. Am. Mineral., 81(5–6): 785–788

    Google Scholar 

  • Belonoshko, A. B., Skorodumova, N. V., Rosengren, A., et al., 2005. High-Pressure Melting of MgSiO3. Phys. Rev. Lett., 94(19): 195701

    Article  Google Scholar 

  • Bowen, N. L., 1913. The Melting Phenomena of the Plagioclase Feldspars. Am. J. Sci., 35(210): 577–599

    Article  Google Scholar 

  • Cohen, R. E., 1992. First-Principles Predictions of Elasticity and Phase Transitions in High Pressure SiO2 and Geophysical Implications. In: Syono, Y., Manghnani, M. H., eds., High-Pressure Research: Applications to Earth and Planetary Sciences. American Geophysical Union, Washington D.C.; Terra Scientific, Tokyo. 425–432

    Google Scholar 

  • Dubrovinsky, L. S., Saxena, S. K., Lazor, P., et al., 1997. Experimental and Theoretical Identification of a New High-Pressure Phase of Silica. Nature, 388(6640): 362–365

    Article  Google Scholar 

  • Hirose, K., Fei, Y. W., Ma, Y. Z., et al., 1999. The Fate of Subducted Basaltic Crust in the Earth’s Lower Mantle. Nature, 396(6714): 53–56

    Google Scholar 

  • Holland, K. G., Ahrens, T. J., 1997. Melting of (Mg, Fe)2SiO4 at the Core-Mantle Boundary of the Earth. Science, 275(5306): 1623–1625

    Article  Google Scholar 

  • Karki, B. B., Bhattarai, D., Stixrude, L., 2007. First-Principles Simulations of Liquid Silica: Structual and Dynamical Behavior at High Pressure. Phys. Rev. B., 76(10): 104205

    Article  Google Scholar 

  • Karki, B. B., Stixrude, L. P., 2010. Viscosity of MgSiO3 Liquid at Earth’s Mantle Conditions: Implications for an Early Magma Ocean. Science, 328(5979): 740–742

    Article  Google Scholar 

  • Karki, B. B., Warren, M. C., Stixrude, L., et al., 1997. Ab Initio Studies of High-Pressure Structural Transformations in Silica. Phys. Rev. B, 55(6): 3465–3471

    Article  Google Scholar 

  • Kato, T., 1986. Stability Relation of (Mg,Fe)SiO3 Garnets, Major Constituents in the Earth’s Interior. Earth Planet. Sci. Lett., 77(3–4): 399–408

    Article  Google Scholar 

  • Kawai, K., Tsuchiya, T., 2009. Temperature Profile in the Lowermost Mantle from Seismological and Mineral Physics Joint Modeling. Proc. Natl. Acad. Sci. USA, 106(52): 22119–22123

    Article  Google Scholar 

  • Kingma, K. J., Cohen, R. E., Hemley, R. J., et al., 1995. Transformation of Stishovite to a Denser Phase at Lower-Mantle Pressures. Nature, 374(6519): 243–245

    Article  Google Scholar 

  • Lacks, D. J., Rear, D. B., Van-Orman, J. A., 2007. Molecular Dynamics Investigation of Viscosity, Chemical Diffusivities and Partial Molar Volumes of Liquids along the MgO-SiO2 Join as Functions of Pressure. Geochem. Cosmochim. Acta, 71(5): 1312–1323

    Article  Google Scholar 

  • Luo, S. N., Cagin, T., Strachan, A., et al., 2005. Molecular Dynamics Modeling of Stishovite. Earth Planet. Sci. Let., 202(1): 147–157

    Article  Google Scholar 

  • McMahan, A. K., Ross, M., 1977. High-Temperature Electron-Band Calculations. Phys. Rev. B, 15: 718–725

    Article  Google Scholar 

  • Mermin, N. D., 1965. Thermal Properties of the Inhomogeneous Electron Gas. Phys. Rev., 127: A1441–A1443

    Article  Google Scholar 

  • Mozzi, R. L., Warren, B. E., 1969. The Structure of Vitreous Silica. J. Appl. Crystallogr., 2: 164–172

    Article  Google Scholar 

  • Murakami, M., Hirose, K., Ono, S., et al., 2003. Stability of CaCl2-Type and Alpha-PbO2-Type SiO2 at High Pressure and Temperature Determined by In Situ X-Ray Measurements. Geophys. Res. Lett., 30(5): doi:10.1029/2002GL016722

  • Ono, S., Hirose, K., Murakami, M., et al., 2002. Post-Stishovite Phase Boundary in SiO2 Determined by In Situ X-Ray Observations. Earth Planet. Sci. Lett., 197(3–4): 187–192

    Article  Google Scholar 

  • Perdew, J. P., Zunger, A., 1981. Self-Interaction Correction to Density-Functional Approximations for Many-Electron Systems. Phys. Rev. B, 23(10): 5048–5079

    Article  Google Scholar 

  • Shen, G. Y., Lazor, P., 1995. Measurement of Melting Temperature of Some Minerals under Lower Mantle Pressures. J. Geophys. Res., 100(B9): 17699–17713

    Article  Google Scholar 

  • Stishov, S. M., Popova, S. V., 1961. A New Dense Modification of Silica. Geokhimiya, 10: 837–839

    Google Scholar 

  • Stixrude, L., Karki, B., 2005. Structure and Freezing of MgSiO3 Liquid in Earth’s Lower Mantle. Science, 310(5746): 297–299

    Article  Google Scholar 

  • Trave, A., Tangney, P., Scandolo, S., et al., 2002. Pressure-Induced Structural Changes in Liquid SiO2 from Ab Initio Simulations. Phys. Rev. Lett., 89(24): 245504

    Article  Google Scholar 

  • Troullier, N., Martins, J. L., 1991. Efficient Pseudopotentials for Plane-Wave Calculations. Phys. Rev. B, 43(3): 1993–2006

    Article  Google Scholar 

  • Tsuchiya, T., Caracas, R., Tsuchiya, J., 2004a. First Principles Determination of the Phase Boundaries of High-Pressure Polymorphs of Silica. Geophys. Res. Lett., 31(11): L11610

    Article  Google Scholar 

  • Tsuchiya, T., Tsuchiya, J., Umemoto, K., et al., 2004b. Phase Transition in MgSiO3 Perovskite in the Earth’s Lower Mantle. Earth Planet. Sci. Lett., 224(3–4): 241–248

    Article  Google Scholar 

  • Vanderbilt, D., 1990. Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism. Phys. Rev. B, 41(11): 7892–7895

    Article  Google Scholar 

  • Waseda, Y., Toguri, J. M., 1977. The Structure of Molten Binary Silicate Systems CaO-SiO2 and MgO-SiO2. Metall. Trans. B, 8: 563–568

    Google Scholar 

  • Williams, Q., Garnero, E. J., 1996. Seismic Evidence for Partial Melt at the Base of Earth’s Mantle. Science, 273(5281): 1528–1530

    Article  Google Scholar 

  • Zhang, J. Z., Liebermann, R. C., Gasparik, T., et al., 1993. Melting and Subsolidus Relations of SiO2 at 9–14 GPa. J. Geophys. Res., 98(B11): 19785–19793

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Usui.

Additional information

This study was supported by the Japan Society for the Promotion of Science (No. 21740330) to Yusuke Usui, (No. 19740331) to Taku Tsuchiya, and a fellowship from the Global-COE program “Deep Earth Mineralogy” to Yusuke Usui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Usui, Y., Tsuchiya, T. Ab initio two-phase molecular dynamics on the melting curve of SiO2 . J. Earth Sci. 21, 801–810 (2010). https://doi.org/10.1007/s12583-010-0126-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-010-0126-9

Keywords

Navigation