Skip to main content
Log in

Acoustic velocities and elastic properties of pyrite (FeS2) to 9.6 GPa

  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

Ultrasonic interferometry was utilized in conjunction with synchrotron-based X-ray diffraction and X-radiographic imaging to determine the compressional and shear wave velocities and unit-cell volumes of pyrite (FeS2) at room temperature and pressures up to 9.6 GPa. Fitting all of the experimental volume and velocity data to third-order finite-strain equations yielded the adiabatic zero-pressure bulk and shear moduli and their first pressure derivatives: K S0=138.9(7) GPa, G 0=112.3(3) GPa, ( K S0/ P) T =K S0′=6.0(1), ( G 0/ P) T =G 0′=3.0(<1), where the numbers in parentheses represent the 1σ uncertainty in the last significant digit. These results are in good agreement with several previous static compression studies on this material but differ quite strongly from the results obtained via first principles calculations. This study presents the first direct measurement of the bulk shear properties of this material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Ahrens, T. J., Jeanloz, R., 1987. Pyrite-Shock Compression, Isentropic Release, and Composition of the Earth’s Core. Journal of Geophysical Research, 92(B10): 10363–10375

    Article  Google Scholar 

  • Badro, J., Fiquet, G., Guyot, F., et al., 2007. Effect of Light Elements on the Sound Velocities in Solid Iron: Implications for the Composition of Earth’s Core. Earth and Planetary Science Letters, 254(1–2): 233–238

    Article  Google Scholar 

  • Benbattouche, N., Saunders, G. A., Lambson, E. F., et al., 1989. The Dependences of the Elastic Stiffness Moduli and the Poisson Ratio of Natural Iron Pyrites FeS2 upon Pressure and Temperature. Journal of Physics D: Applied Physics, 22(5): 670–675

    Article  Google Scholar 

  • Blanchard, M., Alfredsson, M., Brodholt, J., et al., 2005. Electronic Structure Study of the High-Pressure Vibrational Spectrum of FeS2 Pyrite. Journal of Physical Chemistry B, 109(46): 22067–22073

    Article  Google Scholar 

  • Bridgman, P. W., 1949. Linear Compressions to 30 000 kg/cm2, Including Relatively Incompressible Substances. Proceedings of the American Academy of Arts and Sciences, 77(6): 189–234

    Google Scholar 

  • Chattopadhyay, T., von Schnering, H. G., 1985. High Pressure X-Ray Diffraction Study on P-FeS2, M-FeS2 and MnS2 to 340 kbar: A Possible High Spin-Low Spin Transition in MnS2. Journal of Physics and Chemistry of Solids, 46(1): 113–116

    Article  Google Scholar 

  • Chrystall, R. S. B., 1965. Thermal Expansion of Iron Pyrites. Transactions of the Faraday Society, 61(512P): 1811

    Article  Google Scholar 

  • Dreibus, G., Palme, H., 1996. Cosmochemical Constraints on the Sulfur Content in the Earth’s Core. Geochimica et Cosmochimica Acta, 60(7): 1125–1130

    Article  Google Scholar 

  • Drickamer, H. G., Lynch, R. W., Clendenen, R. L., et al., 1967. X-Ray Diffraction Studies of the Lattice Parameters of Solids under very High Pressure. Solid State Physics, 19: 135–228

    Google Scholar 

  • Dziewonski, A. M., Anderson, D. L., 1981. Preliminary Reference Earth Model. Physics of the Earth and Planetary Interiors, 25(4): 297–356

    Article  Google Scholar 

  • Fujii, T., Yoshida, A., Tanaka, K., et al., 1986. High Pressure Compressibilities of Pyrite and Cattierite. Mineralogical Journal, 13(4): 202–211

    Article  Google Scholar 

  • Hofmeister, A. M., Mao, H. K., 2003. Pressure Derivatives of Shear and Bulk Moduli from the Thermal Gruneisen Parameter and Volume-Pressure Data. Geochimica et Cos mochimica Acta, 67(6): 1207–1227

    Google Scholar 

  • Jeanloz, R., 1990. The Nature of the Earth’s Core. Annual Review of Earth and Planetary Sciences, 18: 357–386

    Article  Google Scholar 

  • Jephcoat, A., Olson, P., 1987. Is the Inner Core of the Earth Pure Iron. Nature, 325(6102): 332–335

    Article  Google Scholar 

  • Kleppe, A P.. K., Jephcoat, A. P., 2004. High-Pressure Raman Spectroscopic Studies of FeS2 Pyrite. Mineralogical Magazine, 68(3): 433–441

    Article  Google Scholar 

  • Le Page, Y., Rodgers, J. R., 2005. Ab Initio Elasticity of FeS2 Pyrite from 0 to 135 GPa. Physics and Chemistry of Minerals, 32(8–9): 564–567

    Article  Google Scholar 

  • Li, B. S., Chen, K., Kung, J., et al., 2002. Sound Velocity Measurement Using Transfer Function Method. Journal of Physics—Condensed Matter, 14(44): 11337–11342

    Article  Google Scholar 

  • Li, B. S., Kung, J., Liebermann, R. C., 2004. Modern Techniques in Measuring Elasticity of Earth Materials at High Pressure and High Temperature Using Ultrasonic Interferometry in Conjunction with Synchrotron X-Radiation in Multi-anvil Apparatus. Physics of the Earth and Planetary Interiors, 143–144: 559–574

    Article  Google Scholar 

  • Li, J., Agee, C. B., 2001. Element Partitioning Constraints on the Light Element Composition of the Earth’s Core. Geophysical Research Letters, 28(1): 81–84

    Article  Google Scholar 

  • Li, J., Fei, Y., Mao, H. K., et al., 2001. Sulfur in the Earth’s Inner Core. Earth and Planetary Science Letters, 193(3–4): 509–514

    Article  Google Scholar 

  • Mao, H. K., Shu, J. F., Shen, G. Y., et al., 1998. Elasticity and Rheology of Iron above 220 GPa and the Nature of the Earth’s Inner Core. Nature, 396(6713): 741–743

    Article  Google Scholar 

  • McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3–4): 223–253

    Article  Google Scholar 

  • Merkel, S., Jephcoat, A. P., Shu, J., et al., 2002. Equation of State, Elasticity, and Shear Strength of Pyrite under High Pressure. Physics and Chemistry of Minerals, 29(1): 1–9

    Article  Google Scholar 

  • Oldham, R. D., 1906. The Constitution of the Interior of the Earth, as Revealed by Earthquakes. Quarterly Journal of the Geological Society, 62(1–4): 456–475

    Article  Google Scholar 

  • Prasad, S. C., Wooster, W. A., 1956. The Elasticity of Iron Pyrites, FeS2. Acta Crystallographica, 9(2): 169–173

    Article  Google Scholar 

  • Robie, R. A., Hemingway, B. S., Fisher, J. R., 1979. Thermodynamic Properties of Minerals ad Related Substances at 298.15 K and 1 bar (105 Pascals) Pressure and at Higher Temperatures. United States Geological Survey Bulletin, 1452: 298–310

    Google Scholar 

  • Simmons, G., Birch, F., 1963. Elastic Constants of Pyrite. Journal of Applied Physics, 34(9): 2736–2738

    Article  Google Scholar 

  • Sithole, H. M., Ngoepe, P. E., Wright, K., 2003. Atomistic Simulation of the Structure and Elastic Properties of Pyrite (FeS2) as a Function of Pressure. Physics and Chemistry of Minerals, 30(10): 615–619

    Article  Google Scholar 

  • Skinner, B. J., 1966. Thermal Expansion. In: Clark, S. P. J., ed., Handbook of Physical Constants. Geological Society of America, Boulder, CO. 75–95

    Google Scholar 

  • Smith, F. G., 1942. Variation in the Properties of Pyrite. American Mineralogist, 27(1): 1–19

    Google Scholar 

  • Whitaker, M. L., Liu, W., Liu, Q., et al., 2008. Combined In Situ Synchrotron X-Ray Diffraction and Ultrasonic Interferometry Study of Epsilon-FeSi at High Pressure. High Pressure Research, 28(3): 385–395

    Article  Google Scholar 

  • Whitaker, M. L., Liu, W., Liu, Q., et al., 2009. Thermoelasticity of Epsilon-FeSi to 8 GPa and 1 273 K. American Mineralogist, 94(7): 1039–1044

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew L. Whitaker.

Additional information

This study was supported by the USA National Science Foundation (Nos. EAR00135550, EAR0635860) to Baosheng Li, the USA Department of Energy, Office of Science, Office of Basic Energy Sciences (No. DE-AC02-98CH10886), the Consortium for Materials Properties Research in Earth Sciences under NSF Cooperative Agreement (No. EAR01-35554), and the Mineral Physics Institute, Stony Brook University (MPI Publication No. 480).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whitaker, M.L., Liu, W., Wang, L. et al. Acoustic velocities and elastic properties of pyrite (FeS2) to 9.6 GPa. J. Earth Sci. 21, 792–800 (2010). https://doi.org/10.1007/s12583-010-0115-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-010-0115-z

Key Words

Navigation