Skip to main content
Log in

Dislocation creep accommodated by grain boundary sliding in dunite

  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

To investigate the role of grain boundary sliding during dislocation creep of dunite, a series of deformation experiments were carried out under anhydrous conditions on fine-grained (∼15 μm) samples synthesized from powdered San Carlos olivine and powdered San Carlos olivine+1.5 vol.% MORB. Triaxial compressive creep tests were conducted at a temperature of 1 473 K and confining pressures of 200 and 400 MPa using a high-resolution, gas-medium deformation apparatus. Each sample was deformed at several levels of differential stress between 100 and 250 MPa to yield strain rates in the range of 10−6 to 10−4 s−1. Under these conditions, the dominant creep mechanism involves the motion of dislocations, largely on the easy slip system (010)[100], accommodated by grain boundary sliding (gbs). This grain size-sensitive creep regime is characterized by a stress exponent of n=3.4±0.2 and a grain size exponent of p=2.0±0.2. The activation volume for this gbs-accommodated dislocation creep regime is V*=(26±3)×10−6 m2·mol−1. Comparison of our flow law for gbs-accommodated dislocation creep with those for diffusion creep and for dislocation creep reveals that the present flow law is important for the flow of mantle rocks with grain sizes of <100 μm at differential stresses >20 MPa. Hence, gbs-accommodated dislocation creep is likely to be an important deformation mechanism in deep-rooted, highly localized shear zones in the lithospheric upper mantle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Behrmann, J. H., 1985. Crystal Plasticity and Superplasticity in Quartzite: A Natural Example. Tectonophys., 115(1–2): 101–129

    Article  Google Scholar 

  • Boullier, A. M., Gueguen, Y., 1975. SP-Mylonites: Origin of Some Mylonites by Superplastic Flow. Contrib. Mineral. Petrol., 50: 93–104

    Article  Google Scholar 

  • Castelnau, O., Blackman, D. K., Lebensohn, R. A., et al., 2008. Micromechanical Modeling of the Viscoplastic Behavior of Olivine. J. Geophys. Res., 113(B9), doi:10.1029/2007JB005444

  • Chopra, P. N., Paterson, M. S., 1981. The Experimental Deformation of Dunite. Tectonophys., 78(1–4): 453–473

    Article  Google Scholar 

  • Chopra, P. N., Paterson, M. S., 1984. The Role of Water in the Deformation of Dunite. J. Geophys. Res., 89(B9): 7861–7876

    Article  Google Scholar 

  • Drury, M. R., 2005. Dynamic Recrystallization and Strain Softening of Olivine Aggregates in the Laboratory and the Lithosphere. Geo. Soc. Spec. Publ., 243: 143–158

    Article  Google Scholar 

  • Etheridge, M. A., Wilkie, J. C., 1979. Grain Size Reduction, Grain Boundary Sliding and the Flow Strength of Mylonites. Tectonophys., 58(1–2): 159–178

    Article  Google Scholar 

  • Faul, U. H., Scott, D., 2006. Grain Growth in Partially Molten Olivine Aggregates. Contrib. Mineral. Petrol., 151(1): 101–111

    Article  Google Scholar 

  • Fliervoet, T. F., White, S. H., Drury, M. R., 1997. Evidence for Dominant Grain-Boundary Sliding Deformation in Greenschist- and Amphibolite-Grade Polymineralic Ultramylonites from the Redbank Deformed Zone, Central Australia. J. Struct. Geol., 19(12): 1495–1520

    Article  Google Scholar 

  • Gifkins, R. C., 1970. Optical Microscopy of Metals. Elsevier Sci., New York

    Google Scholar 

  • Gifkins, R. C., 1976. Grain-Boundary Sliding and Its Accommodation during Creep and Superplasticity. Met. Trans., 7A: 1225–1232

    Google Scholar 

  • Gilotti, J. A., Hull, J. M., 1990. Phenomenological Superplasticity in Rocks. In: Knipe, R. J., Rutter, E. H., eds., Deformation Mechanisms, Rheology and Tectonics. Geo. Soc. Spec. Publ., 54: 229–240

  • Goldsby, D. L., 2006. Superplastic Flow of Ice Relevant to Glacier and Ice-Sheet Mechanics. In: Knight, P., ed., Glacier Science and Environmental Change. Blackwell Publishing, Oxford. 308–314

    Chapter  Google Scholar 

  • Goldsby, D. L., Kohlstedt, D. L., 2001. Superplastic Deformation of Ice: Experimental Observations. J. Geophys. Res., 106(B6): 11017–11030

    Article  Google Scholar 

  • Green, H. W., Borch, R. S., 1987. The Pressure Dependence of Creep. Acta Metal., 35(6): 1301–1305

    Article  Google Scholar 

  • Hirth, G., Kohlstedt, D. L., 1995b. Experimental Constraints on the Dynamics of the Partially Molten Upper Mantle 2: Deformation in the Dislocation Creep Regime. J. Geophys. Res., 100(B8): 15441–15449

    Article  Google Scholar 

  • Hirth, G., Kohlstedt, D. L., 1996. Water in the Oceanic Upper Mantle: Implications for Rheology, Melt Extraction and Evolution of the Lithosphere. Earth and Planetary Science Letters, 144(1–2): 93–108

    Article  Google Scholar 

  • Hirth, G., Kohlstedt, D. L., 2003. Rheology of the Upper Mantle and Mantle Wedge: A View from the Experimentalists. In: Eiler, J., ed., Inside the Subduction Factory. Geophysical Monograph, 138: 83–105

  • Hustoft, J. W., Kohlstedt, D. L., 2006. Metal-Silicate Segregation in Deforming Dunitic Rocks. Geochem. Geophys. Geosyst., 7: Q02001. doi:10.1029/2005GC001048

    Article  Google Scholar 

  • Jin, D. G., Karato, S. I., Obata, M., 1998. Mechanisms of Shear Localization in the Continental Lithosphere: Inference from the Deformation Microstructures of Peridotites from the Ivrea Zone, Northwestern Italy. J. Struct. Geol., 20(2–3): 195–209

    Article  Google Scholar 

  • Karato, S. I., 1987. Scanning Electron Microscope Observation of Dislocations in Olivine. Phys. Chem. Mineral., 14(3):245–248

    Article  Google Scholar 

  • Karato, S. I., 1989. Grain Growth Kinetics in Olivine Aggregates. Tectonophys., 168(4): 255–273

    Article  Google Scholar 

  • Karato, S. I., Jung, H., 2003. Effects of Pressure on High-Temperature Dislocation Creep of Olivine. Phil. Mag., 83(3): 401–414

    Article  Google Scholar 

  • Karato, S. I., Paterson, M. S., Fitz-Gerald, J. D., 1986. Rheology of Synthetic Olivine Aggregates: Influence of Grain Size and Water. J. Geophys. Res., 91(B8): 8151–8176

    Article  Google Scholar 

  • Karato, S. I., Rubie, D. C., 1997. Toward an Experimental Study of Deep Mantle Rheology: A New Multianvil Sample Assembly for Deformation Studies under High Pressures and Temperatures. J. Geophys. Res., 102(B9): 20111–20122

    Article  Google Scholar 

  • Kohlstedt, D. L., Goetze, C., Durham, W. B., et al., 1976. New Technique for Decorating Dislocations in Olivine. Science, 191(4231): 1045–1046

    Article  Google Scholar 

  • Langdon, T. G., 1970. Grain Boundary Sliding as a Deformation Mechanism during Creep. Phil. Mag., 22: 689–700

    Article  Google Scholar 

  • Langdon, T. G., 1994. A United Approach to Grain Boundary Sliding in Creep and Superplasticity. Acta Metall. Mater., 42(7): 2437–2443

    Article  Google Scholar 

  • Marchant, D. D., Gordon, R. S., 1971. Grain Size Distribution and Grain Growth in MgO and MgO-Fe2O3 Solid Solutions. J. Am. Ceram. Soc., 55: 19–24

    Article  Google Scholar 

  • Mei, S. H., Kohlstedt, D. L., 2000a. Influence of Water on Plastic Deformation of Olivine Aggregates, 1, Diffusion Creep Regime. J. Geophys. Res., 105(B9): 21457–21469

    Article  Google Scholar 

  • Mei, S. H., Kohlstedt, D. L., 2000b. Influence of Water on Plastic Deformation of Olivine Aggregates, 2, Dislocation Creep Regime. J. Geophys. Res., 105(B9): 21471–21481

    Article  Google Scholar 

  • Mukherjee, A. K., 1971. The Rate Controlling Deformation Mechanism in Superplasticity. Mater. Sci. Eng., 8: 83–89

    Article  Google Scholar 

  • Paterson, M. S., 1990. Rock Deformation Experimentation. In: Duba, A. G., Durham, W. B., Handin, J. W., et al., eds., The Brittle-Ductile Transition in Rocks. Geophysical Monograph, 56: 187–194

  • Precigout, J., Gueydan, F., Gapais, D., et al., 2007. Strain Localisation in the Subcontinental Mantle—A Ductile Alternative to the Brittle Mantle. Tectonophys., 445(3–4): 318–336

    Article  Google Scholar 

  • Raj, R., Ashby, M. F., 1971. On Grain Boundary Sliding and Diffusional Creep. Trans. Met. Soc. AI.M.E., 2: 1113–1127

    Google Scholar 

  • Rutter, E. H., Casey, M., Burlini, L., 1994. Preferred Crystallographic Orientation Development during the Plastic and Superplastic Flow of Calcite Rocks. J. Struct. Geol., 16(10): 1431–1446

    Article  Google Scholar 

  • Schmid, S. M., Boland, J. N., Paterson, M. S., 1977. Superplastic Flow in Fine-Grained Limestone. Tectonophys., 43(3—4): 257–291

    Article  Google Scholar 

  • Schmid, S. M., Panozzo, R., Bauer, S., 1987. Simple Shear Experiments on Calcite Rocks: Rheology and Microfabric. J. Struct. Geol., 9(5–6): 747–778

    Article  Google Scholar 

  • van der Wal, D., Chopra, P., Drury, M., et al., 1993. Relationships between Dynamically Recrystallized Grain Size and Deformation Conditions in Experimentally Deformed Olivine Rocks. Geophys. Res. Lett., 20(14): 1479–1482

    Article  Google Scholar 

  • von Mises, R., 1928. Mechanik der Plastischen Formänderung von Kristallen. Z. Angew. Math. Mech., 8: 161–185

    Article  Google Scholar 

  • Warren, J. M., Hirth, G., 2006. Grain Size Sensitive Deformation Mechanisms in Naturally Deformed Peridotites. Earth and Planetary Science Letters, 248(1–2): 438–450

    Google Scholar 

  • Wu, T., Kohlstedt, D. L., 1988. Rutherford Backscattering Spectroscopy Study of Kinetics of Oxidation of (Mg,Fe)2SiO4. J. Am. Ceram. Soc., 71(7): 540–545

    Article  Google Scholar 

  • Zeuch, D. H., 1984. Application of a Model for Grain Boundary Sliding to High Temperature Flow of Carrara Marble. Mechanics of Materials, 3: 111–117

    Article  Google Scholar 

  • Zimmerman, M. E., Kohlstedt, D. L., 2004. Rheological Properties of Partially Molten Lherzolite. J. Petrol., 45(2): 275–298

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Kohlstedt.

Additional information

This study was supported by the National Science Foundation of USA (No. EAR-0910687), and the National Natural Science Foundation of China (No. 40874043).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Zhao, Y. & Kohlstedt, D.L. Dislocation creep accommodated by grain boundary sliding in dunite. J. Earth Sci. 21, 541–554 (2010). https://doi.org/10.1007/s12583-010-0113-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-010-0113-1

Key Words

Navigation