Skip to main content
Log in

Technical development of simple shear deformation experiments using a deformation-DIA apparatus

  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

Technical developments for simple shear deformation experiments at high pressures were made. The newly designed cell assembly can be compressed by deformation-DIA apparatuses with the MA 6-6 system, which consists of six second-stage tungsten carbide anvils (with a truncated edge length of 5 mm) and the anvil guide. Deformation of samples was barely observed during the compression process, showing that the shear strain of the deformed samples can be measured by the rotation of a strain marker. Simple shear deformation experiments on anhydrous and hydrous olivine aggregates were conducted under upper mantle conditions (pressures of 5.2–7.6 GPa and temperatures of 1 473–1 573 K), and sample deformation with a shear strain of γ=0.8−1.2 was successfully achieved at a shear strain rate of 4.0×10−5−7.5×10−5 s−1. The present study extended the pressure range of simple shear deformation experiments in the deformation-DIA apparatus from 3 GPa in an early study to 7.6 GPa at high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Ayers, J. C., Brenan, J. B., Watson, E. B., et al., 1992. A New Capsule Technique for Hydrothermal Experiments Using the Piston-Cylinder Apparatus. Am. Mineral., 77: 1080–1086

    Google Scholar 

  • Bose, K., Ganguly, J., 1995. Quartz-Coesite Transition Revisited: Reversed Experimental Determination at 500–1 200 °C and Retrieved Thermochemical Properties. Am. Mineral., 80(3–4): 231–238

    Google Scholar 

  • Couvy, H., Frost, D. J., Heidelbach, F., et al., 2004. Shear Deformation Experiments of Forsterite at 11 GPa-1 400 °c in the Multianvil Apparatus. Eur. J. Mineral., 16: 877–889

    Article  Google Scholar 

  • Frost, D. J., 2003. The Structure and Sharpness of (Mg,Fe)2SiO4 Phase Transformations in the Transition Zone. Earth Planet. Sci. Lett., 216(3): 313–328

    Article  Google Scholar 

  • Jung, H., Karato, S. I., 2001a. Water-Induced Fabric Transitions in Olivine. Science, 293(5534): 1460–1462

    Article  Google Scholar 

  • Jung, H., Karato, S. I., 2001b. Effects of Water on Dynamically Recrystallized Grain-Size of Olivine. J. Struct. Geol., 23(9): 1337–1344

    Article  Google Scholar 

  • Jung, H., Katayama, I., Jiang, Z., et al., 2006. Effect of Water and Stress on the Lattice-Preferred Orientation of Olivine. Tectonophys., 421(1–2): 1–22

    Article  Google Scholar 

  • Karato, S. I., Rubie, D. C., 1997. Toward an Experimental Study of Deep Mantle Rheology: A New Multianvil Sample Assembly for Deformation Studies under High Pressures and Temperatures. J. Geophys. Res., 102(B9): 20111–20122

    Article  Google Scholar 

  • Karato, S. I., Jung, H., 2003. Effects of Pressure on High-Temperature Dislocation Creep in Olivine. Philos. Mag., 83(3): 401–414

    Article  Google Scholar 

  • Karato, S. I., Jung, H., Katayama, I., et al., 2008. Geodynamic Significance of Seismic Anisotropy of the Upper Mantle: New Insights from Laboratory Studies. Annu. Rev. Earth Planet. Sci., 36: 59–95

    Article  Google Scholar 

  • Kawazoe, T., Nishiyama, N., Nishihara, Y., et al., 2010. Deformation Experiment at P-T Conditions of the Mantle Transition Zone Using D-DIA Apparatus. Phys. Earth Planet. Inter., doi:10.1016/j.pepi.2010.07.004

  • Kohlstedt, D. L., Goetze, C., Durham, W. B., 1977. The Physics and Chemistry of Minerals and Rocks. Wiley, New York. 35–49

    Google Scholar 

  • Kohlstedt, D. L., Keppler, H., Rubie, D. C., 1996. Solubility of Water in the α, β, γ Phases of (Mg,Fe)2SiO4. Contrib. Mineral. Petrol., 123(4): 345–357

    Article  Google Scholar 

  • Li, L., Weidner, D., Raterron, P., et al., 2006. Deformation of Olivine at Mantle Pressure Using the D-DIA. Eur. J. Mineral., 18: 7–19

    Article  Google Scholar 

  • Litasov, K. D., Shatskiy, A. F., Pal-Yanov, Y. N., et al., 2009. Hydrogen Incorporation into Forsterite in Mg2SiO4-K2Mg(CO3)2-H2O and Mg2SiO4-H2O-C at 7.5–14.0 GPa. Russ. Geol. Geophys., 50(12): 1129–1138

    Article  Google Scholar 

  • Mackwell, S. J., Kohlstedt, D. L., Paterson, M. S., 1985. The Role of Water in the Deformation of Olivine Single Crystals. J. Geophys. Res., 90: 11319–11333

    Article  Google Scholar 

  • Nishiyama, N., Wang, Y. B., Sanehira, T., et al., 2008. Development of the Multi-Anvil Assembly 6-6 for DIA and D-DIA Type High-Pressure Apparatuses. High Pressure Res., 28(3): 307–314

    Article  Google Scholar 

  • Ohuchi, T., Karato, S., Fujino, K., 2010. Strength of Single Crystal of Orthopyroxene under Lithospheric Conditions. Contrib. Mineral. Petrol., doi:10.1007/s00410-010-0574-3

  • Paterson, M. S., 1982. The Determination of Hydroxyl by Infrared Absorption in Quartz, Silicate Glasses and Similar Materials. Bull. Mineral., 105(1): 20–29

    Google Scholar 

  • Raterron, P., Chen, J. H., Li, L., et al., 2007. Pressure-Induced Slip-System Transition in Forsterite: Single-Crystal Rheological Properties at Mantle Pressure and Temperature. Am. Mineral., 92: 1436–1445

    Article  Google Scholar 

  • Raterron, P., Amiguet, E., Chen, J. H., et al., 2009. Experimental Deformation of Olivine Single Crystals at Mantle Pressures and Temperatures. Phys. Earth Planet. Inter., 172(1–2): 74–83

    Article  Google Scholar 

  • Walte, N., Heidelbach, F., Miyajima, N., et al., 2007. Texture Development and TEM Analysis of Deformed CaIrO3: Implications for the D” Layer at the Core-Mantle Boundary. Geophys. Res. Lett., 34(8): L08306, doi:10.1029/2007GL029407

    Article  Google Scholar 

  • Wang, Y. B., Durham, W. B., Getting, I. C., et al., 2003. The Deformation-DIA: A New Apparatus for High Temperature Triaxial Deformation to Pressures up to 15 GPa. Rev. Sci. Instrum., 74(6): 3002–3011

    Article  Google Scholar 

  • Yagi, T., Akaogi, M., Shimomura, O., et al., 1987. In Situ Observation of the Olivine-Spinel Phase Transformation in Fe2SiO4 Using Synchrotron Radiation. J. Geophys. Res., 92(B7): 6207–6213

    Article  Google Scholar 

  • Zhang, J., Li, B., Utsumi, W., et al., 1996. In Situ X-Ray Observations of the Coesite-Stishovite Transition: Reversed Phase Boundary and Kinetics. Phys. Chem. Min., 23(1): 1–10

    Article  Google Scholar 

  • Zhang, S. Q., Karato, S. I., 1995. Lattice Preferred Orientation of Olivine Aggregates in Simple Shear. Nature, 375(6534): 774–777

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiro Ohuchi.

Additional information

This study was supported by the Global COE Program of Ehime University “Deep Earth Mineralogy”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohuchi, T., Kawazoe, T., Nishiyama, N. et al. Technical development of simple shear deformation experiments using a deformation-DIA apparatus. J. Earth Sci. 21, 523–531 (2010). https://doi.org/10.1007/s12583-010-0110-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-010-0110-4

Key Words

Navigation