Role of GABA in the regulation of the central circadian clock of the suprachiasmatic nucleus

  • Daisuke Ono
  • Ken-ichi Honma
  • Yuchio Yanagawa
  • Akihiro Yamanaka
  • Sato Honma
Mini-review
  • 216 Downloads

Abstract

In mammals, circadian rhythms, such as sleep/wake cycles, are regulated by the central circadian clock located in the suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN consists of thousands of individual neurons, which exhibit circadian rhythms. They synchronize with each other and produce robust and stable oscillations. Although several neurotransmitters are expressed in the SCN, almost all SCN neurons are γ-amino butyric acid (GABA)-ergic. Several studies have attempted to understand the roles of GABA in the SCN; however, precise mechanisms of the action of GABA in the SCN are still unclear. GABA exhibits excitatory and/or inhibitory characteristics depending on the circadian phase or region in the SCN. It can both synchronize and destabilize cellular circadian rhythms in individual SCN cells. Differing environmental light conditions, such as a long photoperiod, result in the decoupling of circadian oscillators of the dorsal and ventral SCN. This is due to high intracellular chloride concentrations in the dorsal SCN. Because mice with functional GABA deficiency, such as vesicular GABA transporter- and glutamate decarboxylase-deficient mice, are neonatal lethal, research has been limited to pharmacological approaches. Furthermore, different recording methods have been used to understand the roles of GABA in the SCN. The excitability of GABAergic neurons also changes during the postnatal period. Although there are technical difficulties in understanding the functions of GABA in the SCN, technical developments may help uncover new roles of GABA in circadian physiology and behavior.

Keywords

Circadian rhythm Suprachiasmatic nucleus Clock gene Cellular networks GABA Photoperiod 

Notes

Acknowledgements

This work was supported in part by the Uehara Memorial Foundation, the Nakajima Foundation, GSK Japan Research Grant 2015, the Project for Developing Innovation Systems of the MEXT, and Creation of Innovation Centers for Advanced Interdisciplinary Research Areas Program, Ministry of Education, Culture, Sports, Science and Technology, Japan, and JSPS KAKENHI (Nos. 15H04679, 26860156, 15K12763).

Compliance with ethical standards

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.

Conflict of interest

The authors declare no conflicts of interest.

References

  1. 1.
    Abrahamson EE, Moore RY (2001) Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. Brain Res 916:172–191CrossRefPubMedGoogle Scholar
  2. 2.
    Albus H, Vansteensel MJ, Michel S, Block GD, Meijer JH (2005) A GABAergic mechanism is necessary for coupling dissociable ventral and dorsal regional oscillators within the circadian clock. Curr Biol 15:886–893CrossRefPubMedGoogle Scholar
  3. 3.
    Aton SJ, Colwell CS, Harmar AJ, Waschek J, Herzog ED (2005) Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat Neurosci 8:476–483PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Aton SJ, Huettner JE, Straume M, Herzog ED (2006) GABA and Gi/o differentially control circadian rhythms and synchrony in clock neurons. Proc Natl Acad Sci USA 103:19188–19193PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Barca-Mayo O, Pons-Espinal M, Follert P, Armirotti A, Berdondini L, De Pietri Tonelli D (2017) Astrocyte deletion of Bmal1 alters daily locomotor activity and cognitive functions via GABA signalling. Nature Commun 8:14336CrossRefGoogle Scholar
  6. 6.
    Bedont JL, LeGates TA, Slat EA, Byerly MS, Wang H, Hu J, Rupp AC, Qian J, Wong GW, Herzog ED, Hattar S, Blackshaw S (2014) Lhx1 controls terminal differentiation and circadian function of the suprachiasmatic nucleus. Cell Rep 7:609–622PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Belenky MA, Sollars PJ, Mount DB, Alper SL, Yarom Y, Pickard GE (2010) Cell-type specific distribution of chloride transporters in the rat suprachiasmatic nucleus. Neuroscience 165:1519–1537CrossRefPubMedGoogle Scholar
  8. 8.
    Belenky MA, Yarom Y, Pickard GE (2008) Heterogeneous expression of gamma-aminobutyric acid and gamma-aminobutyric acid-associated receptors and transporters in the rat suprachiasmatic nucleus. J Comp Neurol 506:708–732CrossRefPubMedGoogle Scholar
  9. 9.
    Ben-Ari Y (2002) Excitatory actions of GABA during development: the nature of the nurture. Nat Rev Neurosci 3:728–739CrossRefPubMedGoogle Scholar
  10. 10.
    Brancaccio M, Patton AP, Chesham JE, Maywood ES, Hastings MH (2017) Astrocytes control circadian timekeeping in the suprachiasmatic nucleus via glutamatergic signaling. Neuron 93(1420–1435):e1425Google Scholar
  11. 11.
    Bryant DN, LeSauter J, Silver R, Romero MT (2000) Retinal innervation of calbindin-D28 K cells in the hamster suprachiasmatic nucleus: ultrastructural characterization. J Biol Rhythms 15:103–111PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Bunger MK, Wilsbacher LD, Moran SM, Clendenin C, Radcliffe LA, Hogenesch JB, Simon MC, Takahashi JS, Bradfield CA (2000) Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103:1009–1017PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Cagampang FR, Rattray M, Powell JF, Campbell IC, Coen CW (1996) Circadian changes of glutamate decarboxylase 65 and 67 mRNA in the rat suprachiasmatic nuclei. NeuroReport 7:1925–1928CrossRefPubMedGoogle Scholar
  14. 14.
    Card JP, Moore RY (1984) The suprachiasmatic nucleus of the golden hamster: immunohistochemical analysis of cell and fiber distribution. Neuroscience 13:415–431CrossRefPubMedGoogle Scholar
  15. 15.
    Choi HJ, Lee CJ, Schroeder A, Kim YS, Jung SH, Kim JS, Kim DY, Son EJ, Han HC, Hong SK, Colwell CS, Kim YI (2008) Excitatory actions of GABA in the suprachiasmatic nucleus. J Neurosc 28:5450–5459CrossRefGoogle Scholar
  16. 16.
    Ciabatti E, Gonzalez-Rueda A, Mariotti L, Morgese F, Tripodi M (2017) Life-long genetic and functional access to neural circuits using self-inactivating rabies virus. Cell 170(382–392):e314Google Scholar
  17. 17.
    Cong L, Ran FA, Cox D, Lin SL, Barretto R, Habib N, Hsu PD, Wu XB, Jiang WY, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science (New York, N.Y.) 339:819–823CrossRefGoogle Scholar
  18. 18.
    Darna M, Schmutz I, Richter K, Yelamanchili SV, Pendyala G, Holtje M, Albrecht U, Ahnert-Hilger G (2009) Time of day-dependent sorting of the vesicular glutamate transporter to the plasma membrane. J Biol Chem 284:4300–4307CrossRefPubMedGoogle Scholar
  19. 19.
    Evans JA, Leise TL, Castanon-Cervantes O, Davidson AJ (2013) Dynamic interactions mediated by nonredundant signaling mechanisms couple circadian clock neurons. Neuron 80:973–983CrossRefPubMedGoogle Scholar
  20. 20.
    Farajnia S, van Westering TL, Meijer JH, Michel S (2014) Seasonal induction of GABAergic excitation in the central mammalian clock. Proc Natl Acad Sci USA 111:9627–9632PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Francois-Bellan AM, Hery M, Faudon M, Hery F (1989) Analysis of the inhibitory effect of oestradiol on functional GABA/5-HT relationship in the rat suprachiasmatic area. J Neuroendocrinol 1:415–422CrossRefPubMedGoogle Scholar
  22. 22.
    Freeman GM Jr, Krock RM, Aton SJ, Thaben P, Herzog ED (2013) GABA networks destabilize genetic oscillations in the circadian pacemaker. Neuron 78:799–806PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Gekakis N, Staknis D, Nguyen HB, Davis FC, Wilsbacher LD, King DP, Takahashi JS, Weitz CJ (1998) Role of the CLOCK protein in the mammalian circadian mechanism. Science (New York, N.Y.) 280:1564–1569CrossRefGoogle Scholar
  24. 24.
    Gompf HS, Irwin RP, Allen CN (2006) Retrograde suppression of GABAergic currents in a subset of SCN neurons. Eur J Neurosci 23:3209–3216CrossRefPubMedGoogle Scholar
  25. 25.
    Green DJ, Gillette R (1982) Circadian rhythm of firing rate recorded from single cells in the rat suprachiasmatic brain slice. Brain Res 245:198–200CrossRefPubMedGoogle Scholar
  26. 26.
    Gribkoff VK, Pieschl RL, Wisialowski TA, Park WK, Strecker GJ, de Jeu MT, Pennartz CM, Dudek FE (1999) A reexamination of the role of GABA in the mammalian suprachiasmatic nucleus. J Biol Rhythms 14:126–130CrossRefPubMedGoogle Scholar
  27. 27.
    Halassa MM, Haydon PG (2010) Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior. Annu Rev Physiol 72:335–355PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Hatori M, Gill S, Mure LS, Goulding M, O’Leary DD, Panda S (2014) Lhx1 maintains synchrony among circadian oscillator neurons of the SCN. Elife 3:e03357PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Hattar S, Kumar M, Park A, Tong P, Tung J, Yau KW, Berson DM (2006) Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J Comp Neurol 497:326–349PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Hazlerigg DG, Ebling FJ, Johnston JD (2005) Photoperiod differentially regulates gene expression rhythms in the rostral and caudal SCN. Curr Biol 15:R449–R450CrossRefPubMedGoogle Scholar
  31. 31.
    Hermes ML, Buijs RM, Renaud LP (1996) Electrophysiology of suprachiasmatic nucleus projections to hypothalamic paraventricular nucleus neurons. Prog Brain Res 111:241–252CrossRefPubMedGoogle Scholar
  32. 32.
    Hermes ML, Coderre EM, Buijs RM, Renaud LP (1996) GABA and glutamate mediate rapid neurotransmission from suprachiasmatic nucleus to hypothalamic paraventricular nucleus in rat. J Physiol 496(Pt 3):749–757PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Herzog ED, Aton SJ, Numano R, Sakaki Y, Tei H (2004) Temporal precision in the mammalian circadian system: a reliable clock from less reliable neurons. J Biol Rhythms 19:35–46CrossRefPubMedGoogle Scholar
  34. 34.
    Herzog ED, Takahashi JS, Block GD (1998) Clock controls circadian period in isolated suprachiasmatic nucleus neurons. Nat Neurosci 1:708–713CrossRefPubMedGoogle Scholar
  35. 35.
    Honma S (2018) The mammalian circadian system: a hierarchical multi-oscillator structure for generating circadian rhythm. J Physiol Sci.  https://doi.org/10.1007/s12576-018-0597-5 PubMedGoogle Scholar
  36. 36.
    Honma S, Nakamura W, Shirakawa T, Honma K (2004) Diversity in the circadian periods of single neurons of the rat suprachiasmatic nucleus depends on nuclear structure and intrinsic period. Neurosci Lett 358:173–176CrossRefPubMedGoogle Scholar
  37. 37.
    Honma S, Shirakawa T, Katsuno Y, Namihira M, Honma K (1998) Circadian periods of single suprachiasmatic neurons in rats. Neurosci Lett 250:157–160CrossRefPubMedGoogle Scholar
  38. 38.
    Huhman KL, Hennessey AC, Albers HE (1996) Rhythms of glutamic acid decarboxylase mRNA in the suprachiasmatic nucleus. J Biol Rhythms 11:311–316CrossRefPubMedGoogle Scholar
  39. 39.
    Ikeda M, Toyoda H, Yamada J, Okabe A, Sato K, Hotta Y, Fukuda A (2003) Differential development of cation-chloride cotransporters and Cl- homeostasis contributes to differential GABAergic actions between developing rat visual cortex and dorsal lateral geniculate nucleus. Brain Res 984:149–159CrossRefPubMedGoogle Scholar
  40. 40.
    Ikeda M, Yoshioka T, Allen CN (2003) Developmental and circadian changes in Ca2+ mobilization mediated by GABAA and NMDA receptors in the suprachiasmatic nucleus. Eur J Neurosci 17:58–70CrossRefPubMedGoogle Scholar
  41. 41.
    Inagaki N, Honma S, Ono D, Tanahashi Y, Honma K (2007) Separate oscillating cell groups in mouse suprachiasmatic nucleus couple photoperiodically to the onset and end of daily activity. Proc Natl Acad Sci USA 104:7664–7669PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Inouye ST, Kawamura H (1979) Persistence of circadian rhythmicity in a mammalian hypothalamic “island” containing the suprachiasmatic nucleus. Proc Natl Acad Sci USA 76:5962–5966PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Irwin RP, Allen CN (2009) GABAergic signaling induces divergent neuronal Ca2+ responses in the suprachiasmatic nucleus network. Eur J Neurosci 30:1462–1475PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Itri J, Colwell CS (2003) Regulation of inhibitory synaptic transmission by vasoactive intestinal peptide (VIP) in the mouse suprachiasmatic nucleus. J Neurophysiol 90:1589–1597CrossRefPubMedGoogle Scholar
  45. 45.
    Johnson SW, Seutin V (1997) Bicuculline methiodide potentiates NMDA-dependent burst firing in rat dopamine neurons by blocking apamin-sensitive Ca2+-activated K+ currents. Neurosci Lett 231:13–16CrossRefPubMedGoogle Scholar
  46. 46.
    Jones JR, Tackenberg MC, McMahon DG (2015) Manipulating circadian clock neuron firing rate resets molecular circadian rhythms and behavior. Nat Neurosci 18:373–375PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Kakizaki T, Oriuchi N, Yanagawa Y (2015) GAD65/GAD67 double knockout mice exhibit intermediate severity in both cleft palate and omphalocele compared with GAD67 knockout and VGAT knockout mice. Neuroscience 288:86–93CrossRefPubMedGoogle Scholar
  48. 48.
    Kalsbeek A, Drijfhout WJ, Westerink BH, van Heerikhuize JJ, van der Woude TP, van der Vliet J, Buijs RM (1996) GABA receptors in the region of the dorsomedial hypothalamus of rats are implicated in the control of melatonin and corticosterone release. Neuroendocrinology 63:69–78CrossRefPubMedGoogle Scholar
  49. 49.
    Kalsbeek A, Garidou ML, Palm IF, Van Der Vliet J, Simonneaux V, Pevet P, Buijs RM (2000) Melatonin sees the light: blocking GABA-ergic transmission in the paraventricular nucleus induces daytime secretion of melatonin. Eur J Neurosci 12:3146–3154CrossRefPubMedGoogle Scholar
  50. 50.
    Kalsbeek A, Palm IF, La Fleur SE, Scheer FA, Perreau-Lenz S, Ruiter M, Kreier F, Cailotto C, Buijs RM (2006) SCN outputs and the hypothalamic balance of life. J Biol Rhythms 21:458–469CrossRefPubMedGoogle Scholar
  51. 51.
    Khawaled R, Bruening-Wright A, Adelman JP, Maylie J (1999) Bicuculline block of small-conductance calcium-activated potassium channels. Pflugers Arch 438:314–321CrossRefPubMedGoogle Scholar
  52. 52.
    Klett NJ, Allen CN (2017) Intracellular chloride regulation in AVP+ and VIP+ neurons of the suprachiasmatic nucleus. Sci Rep 7:10226PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Kume K, Zylka MJ, Sriram S, Shearman LP, Weaver DR, Jin X, Maywood ES, Hastings MH, Reppert SM (1999) mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98:193–205CrossRefPubMedGoogle Scholar
  54. 54.
    Leak RK, Moore RY (2001) Topographic organization of suprachiasmatic nucleus projection neurons. J Comp Neurol 433:312–334CrossRefPubMedGoogle Scholar
  55. 55.
    Lee IT, Chang AS, Manandhar M, Shan Y, Fan J, Izumo M, Ikeda Y, Motoike T, Dixon S, Seinfeld JE, Takahashi JS, Yanagisawa M (2015) Neuromedin S-producing neurons act as essential pacemakers in the suprachiasmatic nucleus to couple clock neurons and dictate circadian rhythms. Neuron 85:1086–1102PubMedCentralCrossRefPubMedGoogle Scholar
  56. 56.
    Lehman MN, Silver R, Gladstone WR, Kahn RM, Gibson M, Bittman EL (1987) Circadian rhythmicity restored by neural transplant. Immunocytochemical characterization of the graft and its integration with the host brain. J Neurosci 7:1626–1638PubMedGoogle Scholar
  57. 57.
    Liou SY, Albers HE (1990) Single unit response of neurons within the hamster suprachiasmatic nucleus to GABA and low chloride perfusate during the day and night. Brain Res Bull 25:93–98CrossRefPubMedGoogle Scholar
  58. 58.
    Liou SY, Shibata S, Albers HE, Ueki S (1990) Effects of GABA and anxiolytics on the single unit discharge of suprachiasmatic neurons in rat hypothalamic slices. Brain Res Bull 25:103–107CrossRefPubMedGoogle Scholar
  59. 59.
    Liu AC, Welsh DK, Ko CH, Tran HG, Zhang EE, Priest AA, Buhr ED, Singer O, Meeker K, Verma IM, Doyle FJ 3rd, Takahashi JS, Kay SA (2007) Intercellular coupling confers robustness against mutations in the SCN circadian clock network. Cell 129:605–616PubMedCentralCrossRefPubMedGoogle Scholar
  60. 60.
    Liu C, Reppert SM (2000) GABA synchronizes clock cells within the suprachiasmatic circadian clock. Neuron 25:123–128CrossRefPubMedGoogle Scholar
  61. 61.
    Liu C, Weaver DR, Jin X, Shearman LP, Pieschl RL, Gribkoff VK, Reppert SM (1997) Molecular dissection of two distinct actions of melatonin on the suprachiasmatic circadian clock. Neuron 19:91–102CrossRefPubMedGoogle Scholar
  62. 62.
    Mai JK, Kedziora O, Teckhaus L, Sofroniew MV (1991) Evidence for subdivisions in the human suprachiasmatic nucleus. J Comp Neurol 305:508–525CrossRefPubMedGoogle Scholar
  63. 63.
    Marpegan L, Krall TJ, Herzog ED (2009) Vasoactive intestinal polypeptide entrains circadian rhythms in astrocytes. J Biol Rhythms 24:135–143PubMedCentralCrossRefPubMedGoogle Scholar
  64. 64.
    Marpegan L, Swanstrom AE, Chung K, Simon T, Haydon PG, Khan SK, Liu AC, Herzog ED, Beaule C (2011) Circadian regulation of ATP release in astrocytes. J Neurosci 31:8342–8350PubMedCentralCrossRefPubMedGoogle Scholar
  65. 65.
    Mason R, Biello SM, Harrington ME (1991) The effects of GABA and benzodiazepines on neurones in the suprachiasmatic nucleus (SCN) of Syrian hamsters. Brain Res 552:53–57CrossRefPubMedGoogle Scholar
  66. 66.
    Maywood ES, Chesham JE, O’Brien JA, Hastings MH (2011) A diversity of paracrine signals sustains molecular circadian cycling in suprachiasmatic nucleus circuits. Proc Natl Acad Sci USA 108:14306–14311PubMedCentralCrossRefPubMedGoogle Scholar
  67. 67.
    Maywood ES, Reddy AB, Wong GK, O’Neill JS, O’Brien JA, McMahon DG, Harmar AJ, Okamura H, Hastings MH (2006) Synchronization and maintenance of timekeeping in suprachiasmatic circadian clock cells by neuropeptidergic signaling. Curr Biol 16:599–605CrossRefPubMedGoogle Scholar
  68. 68.
    Mieda M, Ono D, Hasegawa E, Okamoto H, Honma K, Honma S, Sakurai T (2015) Cellular clocks in AVP neurons of the SCN are critical for interneuronal coupling regulating circadian behavior rhythm. Neuron 85:1103–1116CrossRefPubMedGoogle Scholar
  69. 69.
    Moldavan MG, Allen CN (2013) GABAB receptor-mediated frequency-dependent and circadian changes in synaptic plasticity modulate retinal input to the suprachiasmatic nucleus. J Physiol 591:2475–2490PubMedCentralCrossRefPubMedGoogle Scholar
  70. 70.
    Moldavan MG, Irwin RP, Allen CN (2006) Presynaptic GABA(B) receptors regulate retinohypothalamic tract synaptic transmission by inhibiting voltage-gated Ca2+ channels. J Neurophysiol 95:3727–3741CrossRefPubMedGoogle Scholar
  71. 71.
    Moore RY, Eichler VB (1972) Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res 42:201–206CrossRefPubMedGoogle Scholar
  72. 72.
    Moore RY, Klein DC (1974) Visual pathways and the central neural control of a circadian rhythm in pineal serotonin N-acetyltransferase activity. Brain Res 71:17–33CrossRefPubMedGoogle Scholar
  73. 73.
    Moore RY, Speh JC (1993) GABA is the principal neurotransmitter of the circadian system. Neurosci Lett 150:112–116CrossRefPubMedGoogle Scholar
  74. 74.
    Moore RY, Speh JC, Leak RK (2002) Suprachiasmatic nucleus organization. Cell Tissue Res 309:89–98CrossRefPubMedGoogle Scholar
  75. 75.
    Myung J, Hong S, DeWoskin D, De Schutter E, Forger DB, Takumi T (2015) GABA-mediated repulsive coupling between circadian clock neurons in the SCN encodes seasonal time. Proc Natl Acad Sci USA 112:E3920–E3929PubMedCentralCrossRefPubMedGoogle Scholar
  76. 76.
    Nagano M, Adachi A, Nakahama K, Nakamura T, Tamada M, Meyer-Bernstein E, Sehgal A, Shigeyoshi Y (2003) An abrupt shift in the day/night cycle causes desynchrony in the mammalian circadian center. J Neurosci 23:6141–6151PubMedGoogle Scholar
  77. 77.
    Naito E, Watanabe T, Tei H, Yoshimura T, Ebihara S (2008) Reorganization of the suprachiasmatic nucleus coding for day length. J Biol Rhythms 23:140–149CrossRefPubMedGoogle Scholar
  78. 78.
    Nakamura TJ, Takasu NN, Nakamura W (2016) The suprachiasmatic nucleus: age-related decline in biological rhythms. J Physiol Sci 66:367–374CrossRefPubMedGoogle Scholar
  79. 79.
    Nakamura W, Honma S, Shirakawa T, Honma K (2002) Clock mutation lengthens the circadian period without damping rhythms in individual SCN neurons. Nat Neurosci 5:399–400CrossRefPubMedGoogle Scholar
  80. 80.
    Nakamura W, Yamazaki S, Nakamura TJ, Shirakawa T, Block GD, Takumi T (2008) In vivo monitoring of circadian timing in freely moving mice. Curr Biol 18:381–385CrossRefPubMedGoogle Scholar
  81. 81.
    Nakao N, Ono H, Yamamura T, Anraku T, Takagi T, Higashi K, Yasuo S, Katou Y, Kageyama S, Uno Y, Kasukawa T, Iigo M, Sharp PJ, Iwasawa A, Suzuki Y, Sugano S, Niimi T, Mizutani M, Namikawa T, Ebihara S, Ueda HR, Yoshimura T (2008) Thyrotrophin in the pars tuberalis triggers photoperiodic response. Nature 452:317–322CrossRefPubMedGoogle Scholar
  82. 82.
    Ohta H, Yamazaki S, McMahon DG (2005) Constant light desynchronizes mammalian clock neurons. Nat Neurosci 8:267–269CrossRefPubMedGoogle Scholar
  83. 83.
    Okamura H, Berod A, Julien JF, Geffard M, Kitahama K, Mallet J, Bobillier P (1989) Demonstration of GABAergic cell bodies in the suprachiasmatic nucleus: in situ hybridization of glutamic acid decarboxylase (GAD) mRNA and immunocytochemistry of GAD and GABA. Neurosci Lett 102:131–136CrossRefPubMedGoogle Scholar
  84. 84.
    Ono D, Honma S, Honma K (2013) Cryptochromes are critical for the development of coherent circadian rhythms in the mouse suprachiasmatic nucleus. Nature Commun 4:1666CrossRefGoogle Scholar
  85. 85.
    Ono D, Honma S, Honma K (2016) Differential roles of AVP and VIP signaling in the postnatal changes of neural networks for coherent circadian rhythms in the SCN. Sci Adv 2:e1600960PubMedCentralCrossRefPubMedGoogle Scholar
  86. 86.
    Ono D, Honma S, Nakajima Y, Kuroda S, Enoki R, Honma KI (2017) Dissociation of Per1 and Bmal1 circadian rhythms in the suprachiasmatic nucleus in parallel with behavioral outputs. Proc Natl Acad Sci USA 114:E3699–E3708PubMedCentralCrossRefPubMedGoogle Scholar
  87. 87.
    Osakada F, Mori T, Cetin AH, Marshel JH, Virgen B, Callaway EM (2011) New rabies virus variants for monitoring and manipulating activity and gene expression in defined neural circuits. Neuron 71:617–631PubMedCentralCrossRefPubMedGoogle Scholar
  88. 88.
    Perea G, Navarrete M, Araque A (2009) Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 32:421–431CrossRefPubMedGoogle Scholar
  89. 89.
    Pittendrigh CS, Daan S (1976) Functional-analysis of circadian pacemakers in nocturnal rodents. 5. Pacemaker structure—clock for all seasons. J Comp Physiol 106:333–355CrossRefGoogle Scholar
  90. 90.
    Prolo LM, Takahashi JS, Herzog ED (2005) Circadian rhythm generation and entrainment in astrocytes. J Neurosci 25:404–408CrossRefPubMedGoogle Scholar
  91. 91.
    Ralph MR, Foster RG, Davis FC, Menaker M (1990) Transplanted suprachiasmatic nucleus determines circadian period. Science (New York, N.Y.) 247:975–978CrossRefGoogle Scholar
  92. 92.
    Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu XB, Makarova KS, Koonin EV, Sharp PA, Zhang F (2015) In vivo genome editing using Staphylococcus aureus Cas9. Nature 520:U186–U198CrossRefGoogle Scholar
  93. 93.
    Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418:935–941CrossRefPubMedGoogle Scholar
  94. 94.
    Saito K, Kakizaki T, Hayashi R, Nishimaru H, Furukawa T, Nakazato Y, Takamori S, Ebihara S, Uematsu M, Mishina M, Miyazaki J, Yokoyama M, Konishi S, Inoue K, Fukuda A, Fukumoto M, Nakamura K, Obata K, Yanagawa Y (2010) The physiological roles of vesicular GABA transporter during embryonic development: a study using knockout mice. Mol Brain 3:40PubMedCentralCrossRefPubMedGoogle Scholar
  95. 95.
    Sato T, Kawamura H (1984) Circadian rhythms in multiple unit activity inside and outside the suprachiasmatic nucleus in the diurnal chipmunk (Eutamias sibiricus). Neurosci Res 1:45–52CrossRefPubMedGoogle Scholar
  96. 96.
    Sato TK, Yamada RG, Ukai H, Baggs JE, Miraglia LJ, Kobayashi TJ, Welsh DK, Kay SA, Ueda HR, Hogenesch JB (2006) Feedback repression is required for mammalian circadian clock function. Nat Genet 38:312–319PubMedCentralCrossRefPubMedGoogle Scholar
  97. 97.
    Schwartz WJ, Gross RA, Morton MT (1987) The suprachiasmatic nuclei contain a tetrodotoxin-resistant circadian pacemaker. Proc Natl Acad Sci USA 84:1694–1698PubMedCentralCrossRefPubMedGoogle Scholar
  98. 98.
    Schwarz LA, Miyamichi K, Gao XJ, Beier KT, Weissbourd B, DeLoach KE, Ren J, Ibanes S, Malenka RC, Kremer EJ, Luo L (2015) Viral-genetic tracing of the input-output organization of a central noradrenaline circuit. Nature 524:88–92PubMedCentralCrossRefPubMedGoogle Scholar
  99. 99.
    Scott FF, Belle MD, Delagrange P, Piggins HD (2010) Electrophysiological effects of melatonin on mouse Per1 and non-Per1 suprachiasmatic nuclei neurones in vitro. J Neuroendocrinol 22:1148–1156CrossRefPubMedGoogle Scholar
  100. 100.
    Shearman LP, Sriram S, Weaver DR, Maywood ES, Chaves I, Zheng B, Kume K, Lee CC, van der Horst GT, Hastings MH, Reppert SM (2000) Interacting molecular loops in the mammalian circadian clock. Science (New York, N.Y.) 288:1013–1019CrossRefGoogle Scholar
  101. 101.
    Shirakawa T, Honma S, Katsuno Y, Oguchi H, Honma KI (2000) Synchronization of circadian firing rhythms in cultured rat suprachiasmatic neurons. Eur J Neurosci 12:2833–2838CrossRefPubMedGoogle Scholar
  102. 102.
    Silver R, LeSauter J, Tresco PA, Lehman MN (1996) A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature 382:810–813CrossRefPubMedGoogle Scholar
  103. 103.
    Silver R, Romero MT, Besmer HR, Leak R, Nunez JM, LeSauter J (1996) Calbindin-D28 K cells in the hamster SCN express light-induced Fos. NeuroReport 7:1224–1228CrossRefPubMedGoogle Scholar
  104. 104.
    Stephan FK, Berkley KJ, Moss RL (1981) Efferent connections of the rat suprachiasmatic nucleus. Neuroscience 6:2625–2641CrossRefPubMedGoogle Scholar
  105. 105.
    Stephan FK, Zucker I (1972) Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci USA 69:1583–1586PubMedCentralCrossRefPubMedGoogle Scholar
  106. 106.
    Strecker GJ, Wuarin JP, Dudek FE (1997) GABAA-mediated local synaptic pathways connect neurons in the rat suprachiasmatic nucleus. J Neurophysiol 78:2217–2220CrossRefPubMedGoogle Scholar
  107. 107.
    Sujino M, Masumoto KH, Yamaguchi S, van der Horst GT, Okamura H, Inouye ST (2003) Suprachiasmatic nucleus grafts restore circadian behavioral rhythms of genetically arrhythmic mice. Curr Biol 13:664–668CrossRefPubMedGoogle Scholar
  108. 108.
    Tanaka M, Hayashi S, Tamada Y, Ikeda T, Hisa Y, Takamatsu T, Ibata Y (1997) Direct retinal projections to GRP neurons in the suprachiasmatic nucleus of the rat. NeuroReport 8:2187–2191CrossRefPubMedGoogle Scholar
  109. 109.
    Tervo DG, Hwang BY, Viswanathan S, Gaj T, Lavzin M, Ritola KD, Lindo S, Michael S, Kuleshova E, Ojala D, Huang CC, Gerfen CR, Schiller J, Dudman JT, Hantman AW, Looger LL, Schaffer DV, Karpova AY (2016) A designer AAV variant permits efficient retrograde access to projection neurons. Neuron 92:372–382CrossRefPubMedGoogle Scholar
  110. 110.
    Teshima K, Kim SH, Allen CN (2003) Characterization of an apamin-sensitive potassium current in suprachiasmatic nucleus neurons. Neuroscience 120:65–73CrossRefPubMedGoogle Scholar
  111. 111.
    Tousson E, Meissl H (2004) Suprachiasmatic nuclei grafts restore the circadian rhythm in the paraventricular nucleus of the hypothalamus. J Neurosci 24:2983–2988CrossRefPubMedGoogle Scholar
  112. 112.
    Tso CF, Simon T, Greenlaw AC, Puri T, Mieda M, Herzog ED (2017) Astrocytes regulate daily rhythms in the suprachiasmatic nucleus and behavior. Curr Biol 27:1055–1061CrossRefPubMedGoogle Scholar
  113. 113.
    Van den Pol AN (1980) The hypothalamic suprachiasmatic nucleus of rat: intrinsic anatomy. J Comp Neurol 191:661–702CrossRefPubMedGoogle Scholar
  114. 114.
    VanderLeest HT, Houben T, Michel S, Deboer T, Albus H, Vansteensel MJ, Block GD, Meijer JH (2007) Seasonal encoding by the circadian pacemaker of the SCN. Curr Biol 17:468–473CrossRefPubMedGoogle Scholar
  115. 115.
    Vansteensel MJ, Yamazaki S, Albus H, Deboer T, Block GD, Meijer JH (2003) Dissociation between circadian Per1 and neuronal and behavioral rhythms following a shifted environmental cycle. Curr Biol 13:1538–1542CrossRefPubMedGoogle Scholar
  116. 116.
    Wagner S, Castel M, Gainer H, Yarom Y (1997) GABA in the mammalian suprachiasmatic nucleus and its role in diurnal rhythmicity. Nature 387:598–603CrossRefPubMedGoogle Scholar
  117. 117.
    Watts AG, Swanson LW (1987) Efferent projections of the suprachiasmatic nucleus: II. Studies using retrograde transport of fluorescent dyes and simultaneous peptide immunohistochemistry in the rat. J Comp Neurol 258:230–252CrossRefPubMedGoogle Scholar
  118. 118.
    Watts AG, Swanson LW, Sanchez-Watts G (1987) Efferent projections of the suprachiasmatic nucleus: I. Studies using anterograde transport of Phaseolus vulgaris leucoagglutinin in the rat. J Comp Neurol 258:204–229CrossRefPubMedGoogle Scholar
  119. 119.
    Webb AB, Angelo N, Huettner JE, Herzog ED (2009) Intrinsic, nondeterministic circadian rhythm generation in identified mammalian neurons. Proc Natl Acad Sci USA 106:16493–16498PubMedCentralCrossRefPubMedGoogle Scholar
  120. 120.
    Welsh DK, Logothetis DE, Meister M, Reppert SM (1995) Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14:697–706CrossRefPubMedGoogle Scholar
  121. 121.
    Yamaguchi S, Isejima H, Matsuo T, Okura R, Yagita K, Kobayashi M, Okamura H (2003) Synchronization of cellular clocks in the suprachiasmatic nucleus. Science (New York, N.Y.) 302:1408–1412CrossRefGoogle Scholar
  122. 122.
    Yamazaki S, Kerbeshian MC, Hocker CG, Block GD, Menaker M (1998) Rhythmic properties of the hamster suprachiasmatic nucleus in vivo. J Neurosci 18:10709–10723PubMedGoogle Scholar
  123. 123.
    Yamazaki S, Numano R, Abe M, Hida A, Takahashi R, Ueda M, Block GD, Sakaki Y, Menaker M, Tei H (2000) Resetting central and peripheral circadian oscillators in transgenic rats. Science (New York, N.Y.) 288:682–685CrossRefGoogle Scholar
  124. 124.
    Yan L, Foley NC, Bobula JM, Kriegsfeld LJ, Silver R (2005) Two antiphase oscillations occur in each suprachiasmatic nucleus of behaviorally split hamsters. J Neurosci 25:9017–9026PubMedCentralCrossRefPubMedGoogle Scholar
  125. 125.
    Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED, Siepka SM, Hong HK, Oh WJ, Yoo OJ, Menaker M, Takahashi JS (2004) PERIOD2:LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci USA 101:5339–5346PubMedCentralCrossRefPubMedGoogle Scholar
  126. 126.
    Yoshimura T, Yasuo S, Watanabe M, Iigo M, Yamamura T, Hirunagi K, Ebihara S (2003) Light-induced hormone conversion of T4 to T3 regulates photoperiodic response of gonads in birds. Nature 426:178–181CrossRefPubMedGoogle Scholar

Copyright information

© The Physiological Society of Japan and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • Daisuke Ono
    • 1
  • Ken-ichi Honma
    • 2
  • Yuchio Yanagawa
    • 3
  • Akihiro Yamanaka
    • 1
  • Sato Honma
    • 2
  1. 1.Department of Neuroscience II, Research Institute of Environmental MedicineNagoya UniversityNagoyaJapan
  2. 2.Research and Education Center for Brain ScienceHokkaido University Graduate School of MedicineSapporoJapan
  3. 3.Department of Genetic and Behavioral NeuroscienceGunma University Graduate School of MedicineMaebashiJapan

Personalised recommendations