The Journal of Physiological Sciences

, Volume 68, Issue 5, pp 699–706 | Cite as

Effects of two aerobic exercise training protocols on parameters of oxidative stress in the blood and liver of obese rats

  • Daniela Delwing-de Lima
  • Ariene Sampaio Souza Farias Ulbricht
  • Carla Werlang-Coelho
  • Débora Delwing-Dal Magro
  • Victor Hugo Antonio Joaquim
  • Eloise Mariani Salamaia
  • Silvana Rodrigues de Quevedo
  • Larissa Desordi
Original Paper


We evaluated the effects of moderate-intensity continuous training (MICT) and high-intensity interval training (HIIT) protocols on the alterations in oxidative stress parameters caused by a high-fat diet (HFD), in the blood and liver of rats. The HFD enhanced thiobarbituric acid reactive substances (TBA-RS) and protein carbonyl content, while reducing total sulfhydryl content and catalase (CAT) and glutathione peroxidase (GSH-Px) activities in the blood. Both training protocols prevented an increase in TBA-RS and protein carbonyl content, and prevented a reduction in CAT. HIIT protocol enhanced SOD activity. In the liver, HFD didn’t alter TBA-RS, total sulfhydryl content or SOD, but increased protein carbonyl content and CAT and decreased GSH-Px. The exercise protocols prevented the increase in protein carbonyl content and the MICT protocol prevented an alteration in CAT. In conclusion, HFD elicits oxidative stress in the blood and liver and both protocols prevented most of the alterations in the oxidative stress parameters.


Aerobic exercise training protocols Oxidative stress Blood Liver 



This work was supported by grants from Universidade da Região de Joinville.

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Ethical statement

This study was conducted in accordance with the national and institutional guidelines for the care and use of animals.


  1. 1.
    Rao KR, Lal N, Giridharan NV (2014) Genetic & epigenetic approach to human obesity. Indian J Med Res 140(5):589–603PubMedPubMedCentralGoogle Scholar
  2. 2.
    González-Muniesa P, Mártinez-González M-A, Hu FB, Després J-P, Matsuzawa Y, Loos RJF et al (2017) Obesity. Nat Rev Dis Prim 3:17034. CrossRefPubMedGoogle Scholar
  3. 3.
    Oliveira SA Jr, Pai-Silva MD, Martinez PF, Lima-Leopoldo AP, Campos DHS, Leopoldo AS, Okoshi MP, Okoshi K, Padovani CR, Cicogna AC, Oliveira Junior SA, dal Pai-Silva M (2010) Diet-induced obesity causes metabolic, endocrine and cardiac alterations in spontaneously hypertensive rats. Med Sci Monit 16(12):367–373Google Scholar
  4. 4.
    Gómez-Cabello A (2012) Sitting time increases the overweight and obesity risk independently of walking time in elderly people from Spain. Maturitas 73(4):337–343CrossRefPubMedGoogle Scholar
  5. 5.
    Donaldson L, Rutter P (2017) Healthier, fairer, safer: the global health journey, 2007-2017. World Health Organization, Geneva. Licence: CC BY-NC- SA 3.0 IGOGoogle Scholar
  6. 6.
    Qatanani M, Lazar MA (2007) Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes Dev 21:1443–1455CrossRefPubMedGoogle Scholar
  7. 7.
    Vegiopoulos A, Rohm M, Herzig S (2017) Adipose tissue: between the extremes. EMBO J 36(14):1999–2017CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Sassi F (2010) Obesity and the economics of prevention. Fit not fat. OECD, Paris, pp 24–44CrossRefGoogle Scholar
  9. 9.
    Kehrer JP, Klotz LO (2015) Free radicals and related reactive species as mediators of tissue injury and disease: implications for health. Crit Rev Toxicol 45(9):765–798CrossRefPubMedGoogle Scholar
  10. 10.
    Harman D (2003) The free radical theory of aging. Antioxid Redox Signal 5(5):557–561CrossRefPubMedGoogle Scholar
  11. 11.
    Brinkmann C, Brixius K (2013) Peroxiredoxins and sports: new insights on the antioxidative defense. J Physiol Sci 63(1):1–5CrossRefPubMedGoogle Scholar
  12. 12.
    Somani SM, Ravi R, Rybak LP (1995) Effect of exercise training on antioxidant system in brain regions of rat. Pharmacol Biochem Behav 50(4):635–639CrossRefPubMedGoogle Scholar
  13. 13.
    Polidori MC, Mecocci P, Cherubini A, Senin U (2000) Physical activity and oxidative stress during aging. Int J Sports Med 21:154–157CrossRefPubMedGoogle Scholar
  14. 14.
    Sugama K, Suzuki K, Yoshitani K, Shiraishi K, Miura S, Yoshioka H, Mori Y, Kometani T (2015) Changes of thioredoxin, oxidative stress markers, inflammation and muscle/renal damage following intensive endurance exercise. Exerc Immunol Rev 21:130–142PubMedGoogle Scholar
  15. 15.
    Ferreira JCB, Rolim NPL, Batholomeu JB, Gobatto CA, Kokubun E, Brum PC (2007) Maximal lactate steady state in running mice: effects of exercise training. Clin Exp Pharmacol Physiol 34(8):760–765CrossRefPubMedGoogle Scholar
  16. 16.
    Haram PM, Kemi OJ, Lee SJ, Bendheim MO, Al-Share QY, Waldum HL, Gilligan LJ, Kock LG, Britton SL, Najjar SM, Wisloff U (2008) Aerobic interval training vs. continuous moderate exercise in the metabolic syndrome of rats artificially selected for low aerobic capacity. Cardiovasc Res 81:723–732CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ferreira AGK, Cunha AA, Machado FR, Pederzolli CD, Dalazen GR, Assis AM, Lamers ML, Santos MF, Dutra-Filho CS, Wyse ATS (2012) Experimental hyperprolinemia induces mild oxidative stress, metabolic changes, and tissue adaptation in rat liver. J Cel Biochem 113(1):174–183CrossRefGoogle Scholar
  18. 18.
    Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358CrossRefPubMedGoogle Scholar
  19. 19.
    Aksenov MY, Markesbery WR (2001) Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett 302:141–145CrossRefPubMedGoogle Scholar
  20. 20.
    Reznick AZ, Packer L (1994) Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol 233:357–363CrossRefPubMedGoogle Scholar
  21. 21.
    Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126CrossRefPubMedGoogle Scholar
  22. 22.
    Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–333CrossRefPubMedGoogle Scholar
  23. 23.
    Marklund S (1985) Pyrogallol autooxidation. Handbook of methods for oxygen radical. CRC Press, Boca Raton, pp 243–247Google Scholar
  24. 24.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  25. 25.
    Tomao F, Papa A, Zaccarelli E, Rossi L, Caruso D, Minozzi M, Vici P, Frati L, Tomao S (2015) Triple-negative breast cancer: new perspectives for targeted therapies. Onco Targets Ther 8:177–193CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Huang CJ, McAllister MJ, Slusher AL, Webb HE, Mock JT, Acevedo EO (2015) Obesity-related oxidative stress: the impact of physical activity and diet manipulation. Sports Med Open 1:32CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Higa TS (2014) Comparison between cafeteria and high-fat diets in the induction of metabolic dysfunction in mice. Int J Physiol Pathophysiol Pharmacol 6(1):47–54PubMedPubMedCentralGoogle Scholar
  28. 28.
    Yida Z, Imam MU, Ismail M, Ismail N, Ideris A, Abdullah MA (2015) High fat diet-induced inflammation and oxidative stress are attenuated by N-acetylneuraminic acid in rats. J Biomed Sci 22(1):96CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Charradi K, Elkahoui S, Limam F, Aouani E (2013) High-fat diet induced an oxidative stress in white adipose tissue and disturbed plasma transition metals in rat: prevention by grape seed and skin extract. J Physiol Sci 63(6):445–455CrossRefPubMedGoogle Scholar
  30. 30.
    Vassalle C, Pingitore A, De Giuseppe R et al (2015) Biomarkers part II: biomarkers to estimate bioefficacy of dietary/supplemental antioxidants in sport. In: Lamprecht M (ed) Antioxidants in sport nutrition, chap 16. CRC Press/Taylor & Francis, Boca Raton, FLGoogle Scholar
  31. 31.
    Pingitore A, Lima GPP, Mastorci F, Quinones A, Iervasi G, Vassalle C (2015) Exercise and oxidative stress: potential effects of antioxidant dietary strategies in sports. Nutrition 31(7–8):916–922CrossRefPubMedGoogle Scholar
  32. 32.
    Aro CEP, Guzmán JAR, Muñoz MES, González BEV (2015) Effects of high intensity interval training versus moderate intensity continuous training on the reduction of oxidative stress in type 2 diabetic adult patients: CAT. Medwave 15(7):1–13Google Scholar
  33. 33.
    Halliwell B, Whiteman M (2004) Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 142:231–255CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Halliwell B (2014) Cell culture, oxidative stress, and antioxidants: avoiding pitfalls. Biomed J 37(3):99–105PubMedGoogle Scholar
  35. 35.
    Young IS, Woodside JV (2001) Antioxidants in health and disease. J Clin Pathol 54:176–186CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Bogdanis GC, Stavrinou P, Fatouros IG, Philippou A, Chatzinikolaou A, Draganidis D, Ermidis G, Maridaki M (2013) Short-term high-intensity interval exercise training attenuates oxidative stress responses and improves antioxidant status in healthy humans. Food Chem Toxicol 61:171–177CrossRefPubMedGoogle Scholar
  37. 37.
    Shing CM, Peake JM, Ahern SM, Strobel NA, Wilson G, Jenkins DG, Coombes JS (2007) The effect of consecutive days of exercise on markers of oxidative stress. Appl Physiol Nutr Metab 32:677–685CrossRefPubMedGoogle Scholar
  38. 38.
    Vezzoli A, Pugliese L, Marzorati M, Serpiello FR, La Torre A, Porcelli S (2014) Time-course changes of oxidative stress response to high-intensity discontinuous training versus moderate-intensity continuous training in master runners. PLoS One 9(1):1–9CrossRefGoogle Scholar
  39. 39.
    Pimenta M, Bringhentii S, Mello VS, Mendes IKS, Aguila MB, Lacerda CAM (2015) High-intensity interval training beneficial effects on body mass, blood pressure, and oxidative stress in diet-induced obesity in ovariectomized mice. Life Sci 139:75–78CrossRefPubMedGoogle Scholar
  40. 40.
    Steinbacher P, Eckl P (2015) Impact of oxidative stress on exercising skeletal muscle. Biomolecules 5(2):356–377CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Physiological Society of Japan and Springer Japan KK, part of Springer Nature 2017

Authors and Affiliations

  • Daniela Delwing-de Lima
    • 1
    • 2
  • Ariene Sampaio Souza Farias Ulbricht
    • 2
  • Carla Werlang-Coelho
    • 3
    • 4
  • Débora Delwing-Dal Magro
    • 5
  • Victor Hugo Antonio Joaquim
    • 2
    • 3
  • Eloise Mariani Salamaia
    • 1
  • Silvana Rodrigues de Quevedo
    • 6
  • Larissa Desordi
    • 6
  1. 1.Departamento de MedicinaUniversidade da Região de Joinville–UNIVILLEJoinvilleBrasil
  2. 2.Programa de Pós-Graduação em Saúde e Meio AmbienteUniversidade da Região de Joinville–UNIVILLEJoinvilleBrasil
  3. 3.Departamento de Educação FísicaUniversidade da Região de Joinville–UNIVILLEJoinvilleBrasil
  4. 4.Departamento de Química, Universidade do Estado de Santa Catarina (UDESC-Joinville)JoinvilleBrasil
  5. 5.Departamento de Ciências Naturais, Centro de Ciências Exatas e Naturais, Universidade Regional de BlumenauBlumenauBrasil
  6. 6.Departamento de FarmáciaUniversidade da Região de Joinville–UNIVILLEJoinvilleBrasil

Personalised recommendations