The Journal of Physiological Sciences

, Volume 68, Issue 3, pp 243–251 | Cite as

Colokinetic effect of somatostatin in the spinal defecation center in rats

  • Kiyotada Naitou
  • Takahiko Shiina
  • Hiroyuki Nakamori
  • Yuuki Sano
  • Hiroki Shimaoka
  • Yasutake Shimizu
Original Paper


Somatostatin and its receptors are expressed in the spinal cord, but the functional roles of the peptide remain unknown. In this study, we examined the colokinetic effect of somatostatin in the spinal defecation center in anesthetized rats. Intrathecal application of somatostatin into the lumbo-sacral cord caused propulsive contractions of the colorectum. However, somatostatin administered intravenously or intrathecally to the thoracic cord failed to enhance colorectal motility. Transection of the thoracic cord had no significant impact on the colokinetic action of somatostatin. The enhancement of colorectal motility by intrathecal administration of somatostatin was abolished by severing the pelvic nerves. Our results demonstrate that somatostatin acting on the spinal defecation center causes propulsive motility of the colorectum in rats. Considering that somatostatin is involved in nociceptive signal transmission in the spinal cord, our results provide a rational explanation for the concurrent appearance of chronic abdominal pain and colonic motility disorders in IBS patients.


Autonomic nervous system Blood pressure GI motility Irritable bowel syndrome Large intestine SRIF 


Compliance with ethical standards


This research was supported in part by Grants-in-Aid for Scientific Research (KAKENHI) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (JP26292164). This research was also supported in part by Grant-in-Aid for JSPS Research Fellow (JP16J03278). KN was supported by Research Fellowships for Young Scientists from the Japan Society for the Promotion of Science. The authors declare no competing financial interests.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Brazeau P, Vale W, Burgus R, Ling N, Butcher M, Rivier J, Guillemin R (1973) Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 179:77–79CrossRefPubMedGoogle Scholar
  2. 2.
    Patel YC (1999) Somatostatin and its receptor family. Front Neuroendocrinol 20:157–198CrossRefPubMedGoogle Scholar
  3. 3.
    Olias G, Viollet C, Kusserow H, Epelbaum J, Meyerhof W (2004) Regulation and function of somatostatin receptors. J Neurochem 89:1057–1091CrossRefPubMedGoogle Scholar
  4. 4.
    Møller LN, Stidsen CE, Hartmann B, Holst JJ (2003) Somatostatin receptors. Biochim Biophys Acta 1616:1–84CrossRefPubMedGoogle Scholar
  5. 5.
    Yang SK, Chen C (2007) Involvement of somatostatin receptor subtypes in membrane ion channel modification by somatostatin in pituitary somatotropes. Clin Exp Pharmacol Physiol 34:1221–1227CrossRefPubMedGoogle Scholar
  6. 6.
    Schulz S, Pauli SU, Schulz S, Händel M, Dietzmann K, Firsching R, Höllt V (2000) Immunohistochemical determination of five somatostatin receptors in meningioma reveals frequent overexpression of somatostatin receptor subtype sst2A. Clin Cancer Res 6:1865–1874PubMedGoogle Scholar
  7. 7.
    Hökfelt T, Elde R, Johansson O, Luft R, Nilsson G, Arimura A (1976) Immunohistochemical evidence for separate populations of somatostatin-containing and substance P-containing primary afferent neurons in the rat. Neuroscience 1:131–136CrossRefPubMedGoogle Scholar
  8. 8.
    Gutierrez-Mecinas M, Furuta T, Watanabe M, Todd AJ (2016) A quantitative study of neurochemically defined excitatory interneuron populations in laminae I-III of the mouse spinal cord. Mol Pain. doi: 10.1177/1744806916629065
  9. 9.
    Krisch B (1981) Somatostatin-immunoreactive fiber projections into the brain stem and the spinal cord of the rat. Cell Tissue Res 217:531–552CrossRefPubMedGoogle Scholar
  10. 10.
    Strack AM, Sawyer WB, Platt KB, Loewy AD (1989) CNS cell groups regulating the sympathetic outflow to adrenal gland as revealed by transneuronal cell body labeling with pseudorabies virus. Brain Res 491:274–296CrossRefPubMedGoogle Scholar
  11. 11.
    Todd AJ (2010) Neuronal circuitry for pain processing in the dorsal horn. Nat Rev Neurosci 11:823–836CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Braz J, Solorzano C, Wang X, Basbaum AI (2014) Transmitting pain and itch messages: a contemporary view of the spinal cord circuits that generate gate control. Neuron 82:522–536CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Schrøder HD (1984) Somatostatin in the caudal spinal cord: an immunohistochemical study of the spinal centers involved in the innervation of pelvic organs. J Comp Neurol 223:400–414CrossRefPubMedGoogle Scholar
  14. 14.
    Shimizu Y, Chang EC, Shafton AD, Ferens DM, Sanger GJ, Witherington J, Furness JB (2006) Evidence that stimulation of ghrelin receptors in the spinal cord initiates propulsive activity in the colon of the rat. J Physiol 576:329–338CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hirayama H, Shiina T, Shima T, Kuramoto H, Takewaki T, Furness JB, Shimizu Y (2010) Contrasting effects of ghrelin and des-acyl ghrelin on the lumbo-sacral defecation center and regulation of colorectal motility in rats. Neurogastroenterol Motil 22:1124–1131CrossRefPubMedGoogle Scholar
  16. 16.
    Ferens DM, Yin L, Bron R, Hunne B, Ohashi-Doi K, Kitchener PD, Sanger GJ, Witherington J, Shimizu Y, Furness JB (2010) Functional and in situ hybridization evidence that preganglionic sympathetic vasoconstrictor neurons express ghrelin receptors. Neuroscience 166:671–679CrossRefPubMedGoogle Scholar
  17. 17.
    Naitou K, Shiina T, Sugita R, Nakamori H, Shimizu Y (2015) Characterization of ghrelin-sensitive neurons in the lumbosacral defecation center in rats. Neurogastroenterol Motil 27:147–155CrossRefPubMedGoogle Scholar
  18. 18.
    Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K (1992) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402:656–660CrossRefGoogle Scholar
  19. 19.
    Mori K, Kim J, Sasaki K (2010) Electrophysiological effect of ghrelin and somatostatin on rat hypothalamic arcuate neurons in vitro. Peptides 31:1139–1145CrossRefPubMedGoogle Scholar
  20. 20.
    Bogeski G, Shafton AD, Kitchener PD, Ferens DM, Furness JB (2005) A quantitative approach to recording peristaltic activity from segments of rat small intestine in vivo. Neurogastroenterol Motil 17:262–272CrossRefPubMedGoogle Scholar
  21. 21.
    Shima T, Shiina T, Naitou K, Nakamori H, Shimizu Y (2014) Functional roles of capsaicin-sensitive intrinsic neural circuit in the regulation of esophageal peristalsis in rats: in vivo studies using a novel method. Am J Physiol Gastrointest Liver Physiol 306:G811–818CrossRefPubMedGoogle Scholar
  22. 22.
    Naitou K, Mamerto TP, Pustovit RV, Callaghan B, Rivera LR, Chan AJ, Ringuet MT, Pietra C, Furness JB (2015) Site and mechanism of the colokinetic action of the ghrelin receptor agonist, HM01. Neurogastroenterol Motil 27:1764–1771CrossRefPubMedGoogle Scholar
  23. 23.
    Takaki M, Neya T, Nakayama S (1980) Sympathetic activity in the recto-rectal reflex of the guinea pig. Pflugers Arch 388:45–52CrossRefPubMedGoogle Scholar
  24. 24.
    Takaki M, Neya T, Nakayama S (1985) Pelvic afferent reflex control of rectal motility and lumbar colonic efferent discharge mediated by the pontine sympatho-inhibitory region in guinea pigs. Pflugers Arch 403:164–169CrossRefPubMedGoogle Scholar
  25. 25.
    Chessell IP, Black MD, Feniuk W, Humphrey PP (1996) Operational characteristics of somatostatin receptors mediating inhibitory actions on rat locus coeruleus neurones. Br J Pharmacol 117:1673–1678CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Connor M, Bagley EE, Mitchell VA, Ingram SL, Christie MJ, Humphrey PP, Vaughan CW (2004) Cellular actions of somatostatin on rat periaqueductal grey neurons in vitro. Br J Pharmacol 142:1273–1280CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Yamanouchi M, Shimatani H, Kadowaki M, Yoneda S, Nakagawa T, Fujii H, Takaki M (2002) Integrative control of rectoanal reflex in guinea pigs through lumbar colonic nerves. Am J Physiol Gastrointest Liver Physiol 283:G148–156CrossRefPubMedGoogle Scholar
  28. 28.
    Naitou K, Shiina T, Kato K, Nakamori H, Sano Y, Shimizu Y (2015) Colokinetic effect of noradrenaline in the spinal defecation center: implication for motility disorders. Sci Rep 5:12623. doi: 10.1038/srep12623 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Naitou K, Nakamori H, Shiina T, Ikeda A, Nozue Y, Sano Y, Yokoyama T, Yamamoto Y, Yamada A, Akimoto N, Furue H, Shimizu Y (2016) Stimulation of dopamine D2-like receptors in the lumbosacral defaecation centre causes propulsive colorectal contractions in rats. J Physiol 594:4339–4350CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Millan MJ (2002) Descending control of pain. Prog Neurobiol 66:355–474CrossRefPubMedGoogle Scholar
  31. 31.
    Pertovaara A (2006) Noradrenergic pain modulation. Prog Neurobiol 80:53–83CrossRefPubMedGoogle Scholar
  32. 32.
    Shiina T, Naitou K, Nakamori H, Sano Y, Ikeda A, Hirayama H, Shimizu Y (2015) Roles of peptides and amines in the regulation of the colorectal motility via the spinal cord. J Physiol Sci 65:S32Google Scholar
  33. 33.
    Naitou K, Nakamori H, Sano Y, Shiina T, Shimizu Y (2016) Descending adrenergic pathways activate the spinal defecation center in rats. J Physiol Sci 66:S83Google Scholar
  34. 34.
    Rettig R, Geist R, Sauer U, Rohmeiss P, Unger T (1989) Central effects of somatostatin: pressor response, AVP release, and sympathoinhibition. Am J Physiol 257:R588–R594CrossRefPubMedGoogle Scholar
  35. 35.
    Brown MR (1988) Somatostatin-28 effects on central nervous system regulation of vasopressin secretion and blood pressure. Neuroendocrinology 47:556–562CrossRefPubMedGoogle Scholar
  36. 36.
    Burke PG, Li Q, Costin ML, McMullan S, Pilowsky PM, Goodchild AK (2008) Somatostatin 2A receptor-expressing presympathetic neurons in the rostral ventrolateral medulla maintain blood pressure. Hypertension 52:1127–1133CrossRefPubMedGoogle Scholar
  37. 37.
    Drossman DA (2006) The functional gastrointestinal disorders and the Rome III process. Gastroenterology 130:1377–1390CrossRefPubMedGoogle Scholar
  38. 38.
    Longstreth GF, Thompson WG, Chey WD, Houghton LA, Mearin F, Spiller RC (2006) Functional bowel disorder. Gastroenterology 130:1480–1491CrossRefPubMedGoogle Scholar
  39. 39.
    Posserud I, Syrous A, Lindström L, Tack J, Abrahamsson H, Simrén M (2007) Altered rectal perception in irritable bowel syndrome is associated with symptom severity. Gastroenterology 133:1113–1123CrossRefPubMedGoogle Scholar
  40. 40.
    Ritchie J (1973) Pain from distension of the pelvic colon by inflating a balloon in the irritable colon syndrome. Gut 14:125–132CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Mertz H (2003) Review article: visceral hypersensitivity. Aliment Pharmacol Ther 17:623–633CrossRefPubMedGoogle Scholar
  42. 42.
    Coveñas R, DeLeón M, Chadi G, Cintra A, Gustafsson JA, Narvaez JA, Fuxe K (1994) Adrenalectomy increases the number of substance P and somatostatin immunoreactive nerve cells in the rat lumbar dorsal root ganglia. Brain Res 640:352–356CrossRefPubMedGoogle Scholar
  43. 43.
    Murase K, Nedeljkov V, Randić M (1982) The actions of neuropeptides on dorsal horn neurons in the rat spinal cord slice preparation: an intracellular study. Brain Res 234:170–176CrossRefPubMedGoogle Scholar
  44. 44.
    Chapman V, Dickenson AH (1992) The effects of sandostatin and somatostatin on nociceptive transmission in the dorsal horn of the rat spinal cord. Neuropeptides 23:147–152CrossRefPubMedGoogle Scholar
  45. 45.
    Mollenholt P, Rawal N, Gordh T Jr, Olsson Y (1994) Intrathecal and epidural somatostatin for patients with cancer. Analgesic effects and postmortem neuropathologic investigations of spinal cord and nerve roots. Anesthesiology 81:534–542CrossRefPubMedGoogle Scholar

Copyright information

© The Physiological Society of Japan and Springer Japan 2017

Authors and Affiliations

  • Kiyotada Naitou
    • 1
  • Takahiko Shiina
    • 1
  • Hiroyuki Nakamori
    • 1
  • Yuuki Sano
    • 1
  • Hiroki Shimaoka
    • 1
  • Yasutake Shimizu
    • 1
    • 2
  1. 1.Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary SciencesGifu UniversityGifuJapan
  2. 2.Center for Highly Advanced Integration of Nano and Life SciencesGifu University (G-CHAIN)GifuJapan

Personalised recommendations