The Journal of Physiological Sciences

, Volume 65, Issue 2, pp 187–194 | Cite as

Early-life stress increases the motility of microglia in adulthood

  • Yusuke Takatsuru
  • Junichi Nabekura
  • Tatsuya Ishikawa
  • Shin-ichi Kohsaka
  • Noriyuki Koibuchi
Original Paper


Early-life stress may cause several neuropsychological disorders in adulthood. Such disorders may be induced as a result of instability of neuronal circuits and/or synaptic formation. However, the mechanisms underlying such instability have not yet been clearly understood. We previously reported that the mushroom spine in the somatosensory cortex (SSC) is unstable in early-life stressed mice not only in the juvenile stage but also in adulthood. In this study, we measured the number and motility of microglial processes in early-life stressed mice to understand the mechanism further. We found that the number and motility of filopodia-like protrusions of microglial processes tended to increase in the SSC of early-life stressed mice. Interestingly, the motility of protrusions correlated significantly with the nociceptive threshold level measured by the von Frey test. These results indicated that the activity of microglia affected the neuronal function in early-life stressed mice.


Maternal deprivation In vivo imaging In vivo microdialysis Somatosensory cortex 



This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas (23111504) from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) to YT, a Grant-in-Aid for Scientific Research (B) (21390065) from the Japan Society for the Scientific of Sciences (JSPS) to NK, and Core Research for Evolutional Science and Technology from Japan Science and Technology Agency and Grant-in-Aid for Scientific Research (B) (19390055) and (A) (22240042) from the Japan Society for the Scientific of Sciences (JSPS) to JN.

Conflict of interest

There is no conflict of interest in the present study.


  1. 1.
    Romeo RD, McEwen BS (2006) Stress and the adolescent brain. Ann N Y Acad Sci 1094:202–214CrossRefPubMedGoogle Scholar
  2. 2.
    Shair HN (2007) Acquisition and expression of a socially mediated separation response. Behav Brain Res 182:180–192CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Kosten TA, Lee HJ, Kim JJ (2006) Early life stress impairs fear conditioning in adult male and female rats. Brain Res 1087:142–150CrossRefPubMedGoogle Scholar
  4. 4.
    Parfitt DB, Levin JK, Saltstein KP, Klayman AS, Greer LM, Helmreich DL (2004) Differential early rearing environments can accentuate or attenuate the responses to stress in male C57BL/6 mice. Brain Res 1016:111–118CrossRefPubMedGoogle Scholar
  5. 5.
    Slotten HA, Kalinichev M, Hagan JJ, Marsden CA, Fone KC (2006) Long-lasting changes in behavioural and neuroendocrine indices in the rat following neonatal maternal separation: gender-dependent effects. Brain Res 1097:123–132CrossRefPubMedGoogle Scholar
  6. 6.
    Wigger A, Neumann ID (1999) Periodic maternal deprivation induces gender-dependent alterations in behavioral and neuroendocrine responses to emotional stress in adult rats. Physiol Behav 66:293–302CrossRefPubMedGoogle Scholar
  7. 7.
    Bock J, Gruss M, Becker S, Braun K (2005) Experience-induced changes of dendritic spine densities in the prefrontal and sensory cortex: correlation with developmental time windows. Cereb Cortex 15:802–808CrossRefPubMedGoogle Scholar
  8. 8.
    Ovtscharoff W Jr, Braun K (2001) Maternal separation and social isolation modulate the postnatal development of synaptic composition in the infralimbic cortex of Octodon degus. Neuroscience 104:33–40CrossRefPubMedGoogle Scholar
  9. 9.
    Takatsuru Y, Yoshitomo M, Nemoto T, Eto K, Nabekura J (2009) Maternal separation decreases the stability of mushroom spines in adult mice somatosensory cortex. Brain Res 1294:45–51CrossRefPubMedGoogle Scholar
  10. 10.
    Toya S, Takatsuru Y, Amano I, Koibuchi N (2013) The molecular mechanism of early life stress for synaptic instability in somatosensory cortex. J Physiol Sci 63:S152Google Scholar
  11. 11.
    Toya S, Takatsuru Y, Kokubo M, Amano I, Shimokawa N, Koibuchi N (2014) Early-life-stress affects the homeostasis of glutamatergic synapses. Eur J Neurosci 40:3627–3634CrossRefPubMedGoogle Scholar
  12. 12.
    Eyo UB, Wu LJ (2013) Bidirectional microglia-neuron communication in the healthy brain. Neural Plast 2013:456857PubMedCentralPubMedGoogle Scholar
  13. 13.
    Miyamoto A, Wake H, Moorhouse AJ, Nabekura J (2013) Microglia and synapse interactions: fine tuning neural circuits and candidate molecules. Front Cell Neurosci 7:70CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Morris GP, Clark IA, Zinn R, Vissel B (2013) Microglia: a new frontier for synaptic plasticity, learning and memory, and neurodegenerative disease research. Neurobiol Learn Mem 105:40–53CrossRefPubMedGoogle Scholar
  15. 15.
    Wake H, Moorhouse AJ, Miyamoto A, Nabekura J (2013) Microglia: actively surveying and shaping neuronal circuit structure and function. Trends Neurosci 36:209–217CrossRefPubMedGoogle Scholar
  16. 16.
    Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318CrossRefPubMedGoogle Scholar
  17. 17.
    Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J (2009) Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 29:3974–3980CrossRefPubMedGoogle Scholar
  18. 18.
    Tremblay M-È, Lowery RL, Majewska AK (2010) Microglial interactions with synapses are modulated by visual experience. PLoS Biol 8:e1000527CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Hirasawa T, Ohsawa K, Imai Y, Ondo Y, Akazawa C, Uchino S, Kohsaka S (2005) Visualization of microglia in living tissues using Iba1-EGFP transgenic mice. J Neurosci Res 81:357–362CrossRefPubMedGoogle Scholar
  20. 20.
    Crawford MA, Doyle W, Leaf A, Leighfield M, Ghebremeskel K, Phylactos A (1993) Nutrition and neurodevelopmental disorders. Nutr Health 9:81–97CrossRefPubMedGoogle Scholar
  21. 21.
    Takatsuru Y, Eto K, Kaneko R, Masuda H, Shimokawa N, Koibuchi N, Nabekura J (2013) Critical role of the astrocyte for functional remodeling in contralateral hemisphere of somatosensory cortex after stroke. J Neurosci 33:4683–4692CrossRefPubMedGoogle Scholar
  22. 22.
    Grutzendler J, Kasthuri N, Gan WB (2002) Long-term dendritic spine stability in the adult cortex. Nature 420:812–816CrossRefPubMedGoogle Scholar
  23. 23.
    Sanacora G, Treccani G, Popoli M (2012) Towards a glutamate hypothesis of depression: an emerging frontier of neuropsychopharmacology for mood disorders. Neuropharmacology 62:63–77CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Lowy MT, Gault L, Yamamoto BK (1993) Adrenalectomy attenuates stress-induced elevations in extracellular glutamate concentrations in the hippocampus. J Neurochem 61:1957–1960CrossRefPubMedGoogle Scholar
  25. 25.
    Moghaddam B (1993) Stress preferentially increases extraneuronal levels of excitatory amino acids in the prefrontal cortex: comparison to hippocampus and basal ganglia. J Neurochem 60:1650–1657CrossRefPubMedGoogle Scholar
  26. 26.
    Reznikov LR, Grillo CA, Piroli GG, Pasumarthi RK, Reagan LP, Fadel J (2007) Acute stress-mediated increases in extracellular glutamate levels in the rat amygdala: differential effects of antidepressant treatment. Eur J Neurosci 25:3109–3114CrossRefPubMedGoogle Scholar
  27. 27.
    Musazzi L, Milanese M, Farisello P, Zappettini S, Tardito D, Barbiero VS, Bonifacino T, Mallei A, Baldelli P, Racagni G, Raiteri M, Benfenati F, Bonanno G, Popoli M (2010) Acute stress increases depolarization-evoked glutamate release in the rat prefrontal/frontal cortex: the dampening action of antidepressants. PLoS ONE 5:e8566CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Banasr M, Duman RS (2008) Glial loss in the prefrontal cortex is sufficient to induce depressive-like behaviors. Biol Psychiatry 64:863–870CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Popoli M, Yan Z, McEwen BS, Sanacora G (2011) The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission. Nat Rev Neurosci 13:22–37PubMedCentralPubMedGoogle Scholar
  30. 30.
    Aguzzi A, Barres BA, Bennett ML (2013) Microglia: scapegoat, saboteur, or something else? Science 339:156–161CrossRefPubMedGoogle Scholar
  31. 31.
    Perry VH, O’Connor V (2010) The role of microglia in synaptic stripping and synaptic degeneration: a revised perspective. ASN Neuro 2:e00047PubMedGoogle Scholar
  32. 32.
    Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, Giustetto M, Ferreira TA, Guiducci E, Dumas L, Ragozzino D, Gross CT (2011) Synaptic pruning by microglia is necessary for normal brain development. Science 333:1456–1458CrossRefPubMedGoogle Scholar
  33. 33.
    Parkhurst CN, Yang G, Ninan I, Savas JN, Yates JR 3rd, Lafaille JJ, Hempstead BL, Littman, Gan WB (2013) Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155:1596–1609CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, Ransohoff RM, Greenberg ME, Barres BA, Stevens B (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74:691–705CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Xu HT, Pan F, Yang G, Gan WB (2007) Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex. Nat Neurosci 10:549–551CrossRefPubMedGoogle Scholar
  36. 36.
    Dombeck DA, Harvey CD, Tian L, Looger LL, Tank DW (2010) Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. Nat Neurosci 13:1433–1440CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© The Physiological Society of Japan and Springer Japan 2015

Authors and Affiliations

  • Yusuke Takatsuru
    • 1
    • 3
  • Junichi Nabekura
    • 2
    • 4
  • Tatsuya Ishikawa
    • 2
    • 3
  • Shin-ichi Kohsaka
    • 5
  • Noriyuki Koibuchi
    • 1
  1. 1.Department of Integrative PhysiologyGunma University Graduate School of MedicineMaebashiJapan
  2. 2.Division of Homeostatic DevelopmentNational Institute for Physiological SciencesOkazakiJapan
  3. 3.CREST, Japan Science and Technology AgencyKawaguchiJapan
  4. 4.The Graduate University for Advanced StudiesHayamaJapan
  5. 5.Department of NeurochemistryNational Institute of NeuroscienceKodairaJapan

Personalised recommendations