The Journal of Physiological Sciences

, Volume 64, Issue 3, pp 203–211 | Cite as

Involvement of orexin-A neurons but not melanin-concentrating hormone neurons in the short-term regulation of food intake in rats

  • Yuri Nishimura
  • Kaori Mabuchi
  • Sayumi Taguchi
  • Saori Ikeda
  • Eri Aida
  • Hiroko Negishi
  • Akira TakamataEmail author
Original Paper


In order to elucidate the involvement of melanin-concentrating hormone (MCH) and orexin-A (ORX-A) neurons of the perifornical/lateral hypothalamic areas (PF/LH) in the regulation of food intake induced by acutely reduced glucose availability, we examined the food intake response and c-Fos expression in the MCH and ORX-A neurons in the PF/LH during 2-deoxy-d-glucose (2DG)-induced glucoprivation (400 mg/kg; i.v.) and systemic insulin-induced hypoglycemia (5 U/kg; s.c.) in male Wistar rats. The administration of both 2DG and insulin stimulated food intake and induced c-Fos expression in the ORX-A neurons corresponding to food intake, but not in the MCH neurons. These data indicate that ORX-A neurons, but not MCH neurons, play a role in the short-term regulation of food intake, and that the input signals for the neurons containing MCH and ORX-A are different, and these neurons play different roles in the regulation of feeding behavior.


Melanin-concentrating hormone Orexin Feeding behavior Glucosensitive neurons Glucoprivation Hypoglycemia 



The present study was supported by a Grant-in-Aid for Scientific Research (C) (24500975) from the Japan Society for the Promotion of Science (JSPS) and by a Nara Women’s University Intramural Grant for A. Takamata’s project.

Conflict of interest

None of the authors had a personal or financial conflict of interest.


  1. 1.
    Karnani M, Burdakov D (2011) Multiple hypothalamic circuits sense and regulate glucose levels. Am J Physiol Regul Integr Comp Physiol 300:R47–R55PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Levin BE (2006) Metabolic sensing neurons and the control of energy homeostasis. Physiol Behav 89:486–489PubMedCrossRefGoogle Scholar
  3. 3.
    Williams G, Cai XJ, Elliott JC, Harrold JA (2004) Anabolic neuropeptides. Physiol Behav 81:211–222PubMedCrossRefGoogle Scholar
  4. 4.
    Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG (2000) Central nervous system control of food intake. Nature 404:661–671PubMedGoogle Scholar
  5. 5.
    Leibowitz SF, Wortley KE (2004) Hypothalamic control of energy balance: different peptides, different functions. Peptides 25:473–504PubMedCrossRefGoogle Scholar
  6. 6.
    Sakurai T (1999) Orexins and orexin receptors: implication in feeding behavior. Regul Pept 85:25–30PubMedCrossRefGoogle Scholar
  7. 7.
    Bayer L, Mairet-Coello G, Risold P-Y, Griffond B (2002) Orexin/hypocretin neurons: chemical phenotype and possible interactions with melanin-concentrating hormone neurons. Regul Pept 104:33–39PubMedCrossRefGoogle Scholar
  8. 8.
    Guyon A, Conductier G, Rovere C, Enfissi A, Nahon J-L (2009) Melanin-concentrating hormone producing neurons: activities and modulations. Peptides 30:2031–2039PubMedCrossRefGoogle Scholar
  9. 9.
    Sergeyev V, Broberger C, Gorbatyuk O, Hökfelt T (2000) Effect of 2-mercaptoacetate and 2-deoxy-d-glucose administration on the expression of NPY, AGRP, POMC, MCH and hypocretin/orexin in the rat hypothalamus. Neuro Rep 11:117–121Google Scholar
  10. 10.
    Briski KP, Sylvester PW (2001) Hypothalamic orexin-A-immunopositive neurons express Fos in response to central glucopenia. Neuro Rep 12:531–534Google Scholar
  11. 11.
    Griffond B, Risold PY, Jacquemard C et al (1999) Insulin-induced hypoglycemia increases preprohypocretin (orexin) mRNA in the rat lateral hypothalamic area. Neurosci Lett 262:77–80PubMedCrossRefGoogle Scholar
  12. 12.
    Moriguchi T, Sakurai T, Nambu T, Yanagisawa M, Goto K (1999) Neurons containing orexin in the lateral hypothalamic area of the adult rat brain are activated by insulin-induced acute hypoglycemia. Neurosci Lett 264:101–104PubMedCrossRefGoogle Scholar
  13. 13.
    Cai XJ, Evans ML, Lister CA, Leslie RA, Arch JRS, Wilson S, Williams G (2001) Hypoglycemia activates orexin neurons and selectively increases hypothalamic orexin-B levels: responses inhibited by feeding and possibly mediated by the nucleus of the solitary tract. Diabetes 50:105–112PubMedCrossRefGoogle Scholar
  14. 14.
    Zhou L, Yueh C-Y, Lam DD, Shaw J, Osundiji M, Garfield AS, Evans M, Heisler LK (2011) Glucokinase inhibitor glucosamine stimulates feeding and activates hypothalamic neuropeptide Y and orexin neurons. Behav Brain Res 222:274–278PubMedCentralPubMedGoogle Scholar
  15. 15.
    Bayer L, Poncet F, Fellmann D, Griffond B (1999) Melanin-concentrating hormone expression in slice cultures of rat hypothalamus is not affected by 2-deoxyglucose. Neurosci Lett 267:77–80PubMedCrossRefGoogle Scholar
  16. 16.
    Mogi K, Funabashi T, Mitsushima D, Hagiwara H, Kimura F (2005) Sex difference in the response of melanin-concentrating hormone neurons in the lateral hypothalamic area to glucose, as revealed by the expression of phosphorylated cyclic adenosine 3, “5-”monophosphate response element-binding protein. Endocrinology 146:3325–3333PubMedCrossRefGoogle Scholar
  17. 17.
    Qu D, Ludwig DS, Gammeltoft S, Piper M, Pelleymounter MA, Cullen MJ, Mathes WF, Przypek R, Kanarek R, Maratos-Flier E (1996) A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature 380:243–247PubMedCrossRefGoogle Scholar
  18. 18.
    Yoshimura M, Hagimoto M, Matsuura T, Ohkubo J, Ohno M, Maruyama T, Ishikura T, Hashimoto H, Kakuma T, Yoshimatsu H, Terawaki K, Uezono Y, Toyohira Y, Yanagihara N, Ueta Y (2014) Effects of food deprivation on the hypothalamic feeding-regulating peptides gene expressions in serotonin depleted rats. J Physiol Sci 64:97–104PubMedCrossRefGoogle Scholar
  19. 19.
    Bahjaoui-Bouhaddi M, Fellmann D, Griffond B, Bugnon C (1994) Insulin treatment stimulates the rat melanin-concentrating hormone-producing neurons. Neuropeptides 27:251–258PubMedCrossRefGoogle Scholar
  20. 20.
    Hoffman GE, Smith MS, Verbalis JG (1993) c-Fos and related immediate early gene products as markers of activity in neuroendocrine systems. Front Neuroendocrinol 14:173–213PubMedCrossRefGoogle Scholar
  21. 21.
    Kovács KJ (2008) Measurement of immediate-early gene activation-c-fos and beyond. J Neuroendocrinol 20:665–672PubMedCrossRefGoogle Scholar
  22. 22.
    Paxinos G, Watson C (2004) The rat brain in stereotaxic coordinates, 4th edn. Academic Press, San DiegoGoogle Scholar
  23. 23.
    Burdakov D, Gerasimenko O, Verkhratsky A (2005) Physiological changes in glucose differentially modulate the excitability of hypothalamic melanin-concentrating hormone and orexin neurons in situ. J Neurosci 25:2429–2433PubMedCrossRefGoogle Scholar
  24. 24.
    Funabashi T, Hagiwara H, Mogi K, Mitsushima D, Shinohara K, Kimura F (2009) Sex differences in the responses of orexin neurons in the lateral hypothalamic area and feeding behavior to fasting. Neurosci Lett 463:31–34PubMedCrossRefGoogle Scholar
  25. 25.
    Shiraishi T, Mager M (1980) 2-deoxy-d-glucose-induced hypothermia: thermoregulatory pathways in rat. Am J Physiol 239:R270–R276PubMedGoogle Scholar
  26. 26.
    Fiorentini A, Müller EE (1975) Sensitivity of central chemoreceptors controlling blood glucose and body temperature during glucose deprivation. J Physiol Lond 248:247–271PubMedCentralPubMedGoogle Scholar
  27. 27.
    Elias CF, Aschkenasi C, Lee C, Kelly J, Ahima RS, Bjorbaek C, Flier JS, Saper CB, Elmquist JK (1999) Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area. Neuron 23:775–786PubMedCrossRefGoogle Scholar
  28. 28.
    Niimi M, Sato M, Taminato T (2001) Neuropeptide Y in central control of feeding and interactions with orexin and leptin. Endocrine 14:269–273PubMedCrossRefGoogle Scholar
  29. 29.
    Sahu A (2002) Interactions of neuropeptide Y, hypocretin-I (orexin-A) and melanin-concentrating hormone on feeding in rats. Brain Res 944:232–238PubMedCrossRefGoogle Scholar
  30. 30.
    Luquet S, Phillips CT, Palmiter RD (2007) NPY/AgRP neurons are not essential for feeding responses to glucoprivation. Peptides 28:214–225PubMedCrossRefGoogle Scholar
  31. 31.
    Pardini AW, Nguyen HT, Figlewicz DP, Baskin DG, Williams DL, Kim F, Schwartz MW (2006) Distribution of insulin receptor substrate-2 in brain areas involved in energy homeostasis. Brain Res 1112:169–178PubMedCrossRefGoogle Scholar

Copyright information

© The Physiological Society of Japan and Springer Japan 2014

Authors and Affiliations

  • Yuri Nishimura
    • 1
  • Kaori Mabuchi
    • 1
  • Sayumi Taguchi
    • 1
  • Saori Ikeda
    • 1
  • Eri Aida
    • 1
  • Hiroko Negishi
    • 1
  • Akira Takamata
    • 1
    Email author
  1. 1.Department of Environmental HealthNara Women’s UniversityNaraJapan

Personalised recommendations