Skip to main content

Advertisement

Log in

Challenges for ‘diastology’: contributions from Japanese researchers

  • Special Article
  • Published:
Journal of Echocardiography Aims and scope Submit manuscript

Abstract

Diastology is a study to treat diastole of the heart. Transmitral flow and pulmonary venous flow velocities recorded by pulsed Doppler echocardiography provide more important information about left ventricular (LV) diastolic dysfunction [left atrial (LA)−LV coupling] than cardiac catheterization in clinical practice; however, these waveforms are influenced by loading conditions, particularly preload. The early diastolic mitral annular and LV wall motion indices measured by tissue Doppler echocardiography can evaluate LV relaxation abnormality and filling pressure by being relatively preload independent. In addition, the role of concomitant systolic longitudinal dysfunction is well characterized in asymptomatic patients and in patients with heart failure and preserved ejection fraction. Two-dimensional speckle tracking echocardiography is an angle-independent method, and has the potential to evaluate the contraction and relaxation abnormalities in the longitudinal, circumferential, and radial directions of the LV myocardium as well as LV torsion/untwisting and, moreover, deformation of the LA myocardium and large arterial wall. As a result, this new technique can facilitate the early detection of impaired LA−LV−arterial coupling in patients before occurrence of overt heart failure symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nishimura RA, Appleton CP. “Diastology”: beyond E and A. J Am Coll Cardiol. 1996;27:372–4.

    Article  CAS  PubMed  Google Scholar 

  2. Kitabatake A, Inoue M, Asao M, et al. Transmitral blood flow reflecting diastolic behavior of the left ventricle in health and disease: a study by pulsed Doppler technique. Jpn Circ J. 1982;46:92–102.

    Article  CAS  PubMed  Google Scholar 

  3. Edler I, Gustafson A. Ultrasonic cardiogram in mitral stenosis. Acta Med Scand. 1957;159:85–90.

    Article  CAS  PubMed  Google Scholar 

  4. Oki T. Clinical practice in M-mode echocardiographic diagnosis. Tokyo: Igaku-Shuppan Publishing Company; 1978. p. 193 (in Japanese).

    Google Scholar 

  5. Matsuo H, Kitabatake A, Asao M, et al. Noninvasive evaluation of diastolic properties of the left ventricle by pulsed Doppler flowmetry combined with real-time two-dimensional echocardiography. J Cardiogr. 1980;10:697–708 (in Japanese).

    Google Scholar 

  6. Miyatake K, Okamoto M, Kinoshita N, et al. Augmentation of atrial contribution to ventricular inflow with aging as assessed by intracardiac flowmetry. Am J Cardiol. 1984;53:586–9.

    Article  CAS  PubMed  Google Scholar 

  7. Appleton CP, Hatle LK, Popp RL. Relation of transmitral flow velocity patterns to left ventricular diastolic function: new insights from a combined hemodynamic and Doppler echocardiographic study. J Am Coll Cardiol. 1988;12:426–40.

    Article  CAS  PubMed  Google Scholar 

  8. Ohkushi H, Asai M, Ishimoto T, et al. Left ventricular diastolic filling patterns in hypertrophic cardiomyopathy and myocardial infarction: studies by pulsed Doppler echocardiography and multi-gated blood pool scan. J Cardiogr. 1984;14:95–104 (in Japanese).

    CAS  PubMed  Google Scholar 

  9. Tominaga T, Oki T, Asai M, et al. Non-invasive assessment of left ventricular filling during atrial systole by pulsed Doppler echocardiography and apexcardiography. Jpn J Med Ultrasonics. 1986;13:315–23 (in Japanese).

    Google Scholar 

  10. Oki T, Fukuda N, Iuchi A, et al. Changes in left ventricular inflow and pulmonary venous flow velocities during preload alteration in hypertrophic cadiomyopathy. Am J Cardiol. 1996;77:430–5.

    Article  CAS  PubMed  Google Scholar 

  11. Kiyoshige K, Oki T, Fukuda N, et al. Changes in left ventricular inflow and pulmonary venous flow velocities during preload alteration in dilated heart. Clin Cardiol. 1996;19:38–44.

    Article  CAS  PubMed  Google Scholar 

  12. Takenaka K, Dabestani A, Gardin JM, et al. Pulsed Doppler echocardiographic study of left ventricular filling in dilated cardiomyopathy. Am J Cardiol. 1986;58:143–7.

    Article  CAS  PubMed  Google Scholar 

  13. Oki T, Fukuda N, Iuchi A, et al. Evaluation of left ventricular diastolic hemodynamics from the left ventricular inflow and pulmonary venous flow velocities in hypertrophic cardiomyopathy. Jpn Heart J. 1995;36:617–27.

    Article  CAS  PubMed  Google Scholar 

  14. Yamamoto K, Nishimura RA, Chaliki HP, et al. Determination of left ventricular filling pressure by Doppler echocardiography in patients with coronary artery disease: critical role of left ventricular systolic function. J Am Coll Cardiol. 1997;30:1819–26.

    Article  CAS  PubMed  Google Scholar 

  15. Rihal CS, Nishimura RA, Hatle LK, et al. Systolic and diastolic dysfunction in patients with clinical diagnosis of dilated cardiomyopathy: relation to symptoms and prognosis. Circulation. 1994;90:2772–9.

    Article  CAS  PubMed  Google Scholar 

  16. Keren G, Sherez J, Megidish R, et al. Pulmonary venous flow pattern−its relationship to cardiac dynamics. A pulsed Doppler echocardiographic study. Circulation. 1985;71:1105–12.

    Article  CAS  PubMed  Google Scholar 

  17. Matsuzaki M, Toma Y, Kusukawa R. Clinical application of transesophageal echocardiography. Circulation. 1990;82:702–22.

    Article  Google Scholar 

  18. Rajagopalan B, Friend JA, Stallard T, et al. Blood flow in pulmonary veins. I. Studies in dog and man. Cardiovasc Res. 1979;13:667–76.

    Article  CAS  PubMed  Google Scholar 

  19. Masuyama T, Lee JM, Tamai M, et al. Pulmonary venous flow pattern as assessed with transthoracic pulsed Doppler echocardiography in subjects without cardiac disease. Am J Cardiol. 1991;67:1396–404.

    Article  CAS  PubMed  Google Scholar 

  20. Ogawa S, Oki T, Iuchi A, et al. Analysis of flow velocity patterns in the superior vena cava and the pulmonary vein in cases of hypertrophic cardiomyopathy. Jpn J Med Ultrasonics. 1990;17:223–32 (in Japanese).

    Google Scholar 

  21. Kuecherer HF, Muhiudeen IA, Kusumoto FM, et al. Estimation of mean left atrial pressure from transesophageal pulsed Doppler echocardiography of pulmonary venous flow. Circulation. 1990;82:1127–39.

    Article  CAS  PubMed  Google Scholar 

  22. Miyoshi H, Oishi Y, Mizuguchi Y, et al. Relation of atrial function to ventricular filling during preload reduction in normal subjects: combined analysis of atrioventricular and venous flow velocities. J Echocardiogr. 2007;5:48–54.

    Article  Google Scholar 

  23. Kageji Y, Oki T, Iuchi A, et al. Relationship between pulmonary capillary wedge v wave and transmitral and pulmonary venous flow velocity patterns in various heart diseases. J Card Fail. 1996;2:215–22.

    Article  CAS  PubMed  Google Scholar 

  24. Yamamuro A, Yoshida K, Hozumi T, et al. Noninvasive evaluation of pulmonary capillary wedge pressure in patients with acute myocardial infarction by deceleration time of pulmonary venous flow velocity in diastole. J Am Coll Cardiol. 1999;34:90–4.

    Article  CAS  PubMed  Google Scholar 

  25. Nakatani S, Garcia MJ, Firstenberg MS, et al. Noninvasive assessment of left atrial maximum dP/dt by a combination of transmitral and pulmonary venous flow. J Am Coll Cardiol. 1999;34:795–801.

    Article  CAS  PubMed  Google Scholar 

  26. Matsuda Y, Toma Y, Matsuzaki M, et al. Change in left atrial systolic pressure waveform in relation to left ventricular end-diastolic pressure. Circulation. 1990;82:1659–67.

    Article  CAS  PubMed  Google Scholar 

  27. Oki T, Oishi Y, Tanaka H, et al. Renewed interest in left atrial function: what do we need to evaluate clinically? J Echocardiogr. 2005;3:60–76.

    Article  Google Scholar 

  28. Yamada H, Oki T, Tabata T, et al. Differences in transmitral flow velocity pattern during increase in preload in patients with abnormal left ventricular relaxation. Cardiology. 1998;89:152–8.

    Article  CAS  PubMed  Google Scholar 

  29. Yamada H, Kusunose K, Nishio S, et al. Pre-load stress echocardiography for predicting the prognosis in mild heart failure. JACC Cardiovasc Imaging. 2014;7:641–9.

    Article  PubMed  Google Scholar 

  30. Goto M, Arakawa M, Suzuki T, et al. A quantitative analysis of reservoir function of the human pulmonary “venous” system for the left ventricle. Jpn Circ J. 1986;50:222–31.

    Article  CAS  PubMed  Google Scholar 

  31. Nagano R, Masuyama T, Lee JM, et al. Transthoracic Doppler assessment of pattern of left ventricular dysfunction in hypertensive heart disease: combined analysis of mitral and pulmonary venous flow velocity patterns. J Am Soc Echocardiogr. 1994;7:493–505.

    Article  CAS  PubMed  Google Scholar 

  32. Kawaguchi M, Hay I, Fetics B, et al. Combined ventricular systolic and arterial stiffening in patients with heart failure and preserved ejection fraction: implications for systolic and diastolic reserve limitations. Circulation. 2003;107:714–20.

    Article  PubMed  Google Scholar 

  33. Oki T, Fukuda N, Iuchi A, et al. Left atrial systolic performance in the presence of elevated left ventricular end-diastolic pressure: evaluation by transesophageal pulsed Doppler echocardiography of left ventricular inflow and pulmonary venous flow velocities. Echocardiography. 1997;14:23–32.

    Article  PubMed  Google Scholar 

  34. Ohtani K, Yutani C, Nagata S, et al. High prevalence of atrial fibrosis in patients with dilated cardiomyopathy. J Am Coll Cardiol. 1995;25:1162–9.

    Article  CAS  PubMed  Google Scholar 

  35. Iuchi A, Oki T, Fukuda N, et al. Changes in transmitral and pulmonary venous flow velocity patterns after cardioversion of atrial fibrillation. Am Heart J. 1996;131:270–5.

    Article  CAS  PubMed  Google Scholar 

  36. Tabata T, Oki T, Iuchi A, et al. Evaluation of left atrial appendage function by measurements of changes in flow velocity patterns after electrical cardioversion in patients with isolated atrial fibrillation. Am J Cardiol. 1997;79:615–20.

    Article  CAS  PubMed  Google Scholar 

  37. Tabata T, Thomas JD, Klein AL. Pulmonary venous flow by Doppler echocardiography: revisited 12 years later. J Am Coll Cardiol. 2003;41:1243–50.

    Article  PubMed  Google Scholar 

  38. Tabata T, Oki T, Fukuda N, et al. Influence of left atrial pressure on left atrial appendage flow velocity patterns in patients in sinus rhythm. J Am Soc Echocardiogr. 1996;9:857–64.

    Article  CAS  PubMed  Google Scholar 

  39. Tabata T, Oki T, Yamada H, et al. Role of left atrial appendage in left atrial reservoir function as evaluated by left atrial appendage clamping during cardiac surgery. Am J Cardiol. 1998;81:327–32.

    Article  CAS  PubMed  Google Scholar 

  40. Takatsuji H, Mikami T, Urasawa K, et al. A new approach for evaluation of left ventricular diastolic function: spatial and temporal analysis of left ventricular filling flow propagation by color M-mode Doppler echocardiography. J Am Coll Cardiol. 1996;27:365–71.

    Article  CAS  PubMed  Google Scholar 

  41. Isaaz K, Thompson A, Ethevenot G, et al. Doppler echocardiographic measurement of low velocity motion of the left ventricular posterior wall. Am J Cardiol. 1989;64:66–75.

    Article  CAS  PubMed  Google Scholar 

  42. Yamazaki N, Mine Y, Sano A, et al. Analysis of ventricular wall motion using color-coded tissue Doppler imaging system. Jpn J Appl Physiol. 1994;33:3141–6.

    Article  Google Scholar 

  43. Garcia MJ, Rodriguez L, Ares M, et al. Differentiation of constrictive pericarditis from restrictive cardiomyopathy: assessment of left ventricular diastolic velocities in longitudinal axis by Doppler tissue imaging. J Am Coll Cardiol. 1996;27:108–14.

    Article  CAS  PubMed  Google Scholar 

  44. Oki T, Tabata T, Yamada H, et al. Right and left ventricular wall motion velocities as diagnostic indicators of constrictive pericarditis. Am J Cardiol. 1998;81:465–70.

    Article  CAS  PubMed  Google Scholar 

  45. Oki T, Tabata T, Yamada H, et al. Clinical application of pulsed Doppler tissue imaging for assessing abnormal left ventricular relaxation. Am J Cardiol. 1997;79:921–8.

    Article  CAS  PubMed  Google Scholar 

  46. Nagueh SF, Middleton KJ, Kopelen HA, et al. Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. J Am Coll Cardiol. 1997;30:1527–33.

    Article  CAS  PubMed  Google Scholar 

  47. Yamada H, Oki T, Mishiro Y, et al. Effect of aging on diastolic left ventricular myocardial velocities measured by pulsed tissue Doppler imaging in healthy subjects. J Am Soc Echocardiogr. 1999;12:574–81.

    Article  CAS  PubMed  Google Scholar 

  48. Oki T, Mishiro Y, Yamada H, et al. Detection of left ventricular regional relaxation abnormalities and asynchrony in patients with hypertrophic cardiomyopathy with the use of tissue Doppler imaging. Am Heart J. 2000;139:497–502.

    Article  CAS  PubMed  Google Scholar 

  49. Onose Y, Oki T, Tabata T, et al. Assessment of the temporal relationship between left ventricular relaxation and filling during early diastole using pulsed Doppler echocardiography and tissue Doppler imaging. Jpn Circ J. 1999;63:209–15.

    Article  CAS  PubMed  Google Scholar 

  50. Kusunose K, Yamada H, Nishio S, et al. Interval from the onset of transmitral flow to annular velocity is a marker of LV filling pressure. JACC Cardiovasc Imaging. 2013;6:528–30.

    Article  PubMed  Google Scholar 

  51. Yamamoto T, Oki T, Yamada H, et al. Prognostic value of the atrial systolic mitral annular motion velocity in patients with left ventricular systolic dysfunction. J Am Soc Echocardiogr. 2003;16:333–9.

    Article  PubMed  Google Scholar 

  52. Inouye I, Massie B, Loge D, et al. Abnormal left ventricular filling: an early finding in mild to moderate systemic hypertension. Am J Cardiol. 1984;53:120–6.

    Article  CAS  PubMed  Google Scholar 

  53. Nesto RW, Kowalchuk GJ. The ischemic cascade: temporal sequence of hemodynamic, electrocardiographic and symptomatic expressions of ischemia. Am J Cardiol. 1987;59:23C–30C.

    Article  CAS  PubMed  Google Scholar 

  54. Oki T, Tabata T, Mishiro Y, et al. Pulsed tissue Doppler imaging of left ventricular systolic and diastolic wall motion velocities to evaluate differences between long and short axes in healthy subjects. J Am Soc Echocardiogr. 1999;12:308–13.

    Article  CAS  PubMed  Google Scholar 

  55. Oki T, Iuchi A, Tabata T, et al. Left ventricular systolic wall motion velocities along the long and short axes measured by pulsed tissue Doppler imaging in patients with atrial fibrillation. J Am Soc Echocardiogr. 1999;12:121–8.

    Article  CAS  PubMed  Google Scholar 

  56. Onose Y, Oki T, Mishiro Y, et al. Influence of aging on systolic left ventricular wall motion velocities along the long and short axes in clinically normal patients determined by pulsed tissue Doppler imaging. J Am Soc Echocardiogr. 1999;12:921–6.

    Article  CAS  PubMed  Google Scholar 

  57. Mishiro Y, Oki T, Yamada H, et al. Use of angiotensin IIstress pulsed tissue Doppler imaging to evaluate regional left ventricular contractility in patients with hypertrophic cardiomyopathy. J Am Soc Echocardiogr. 2000;13:1065–73.

    Article  CAS  PubMed  Google Scholar 

  58. Matsuoka M, Oki T, Mishiro Y, et al. Early systolic mitral annular motion velocities responses to dobutamine infusion predict myocardial viability in patients with previous myocardial infarction. Am Heart J. 2002;143:552–8.

    Article  PubMed  Google Scholar 

  59. Tei C, Ling LH, Hodge DO, et al. New noninvasive index for combined systolic and diastolic ventricular function. J Cardiol. 1995;26:135–6.

    CAS  PubMed  Google Scholar 

  60. Kono M, Kisanuki A, Takasaki K, et al. Left ventricular systolic function is abnormal in diastolic heart failure: re-assessment of systolic function using cardiac time interval analysis. J Cardiol. 2009;53:437–46.

    Article  PubMed  Google Scholar 

  61. Leitman M, Lysyansky P, Sidenko S, et al. Two-dimensional strain—a novel software for real-time quantitative echocardiographic assessment of myocardial function. J Am Soc Echocardiogr. 2004;17:1021–9.

    Article  PubMed  Google Scholar 

  62. Notomi Y, Lysyansky P, Setser RM, et al. Measurement of ventricular torsion by two-dimensional ultrasound speckle tracking imaging. J Am Coll Cardiol. 2005;45:2034–41.

    Article  PubMed  Google Scholar 

  63. Notomi Y, Popovic ZB, Yamada H, et al. Ventricular untwisting: a temporal link between left ventricular relaxation and suction. Am J Physiol. 2008;294:H505–13.

    CAS  Google Scholar 

  64. D’Andrea A, Caso P, Romano S, et al. Different effects of cardiac resynchronization therapy on left atrial function in patients with either idiopathic or ischaemic dilated cardiomyopathy: a two-dimensional speckle strain study. Eur Heart J. 2007;28:2738–48.

    Article  PubMed  Google Scholar 

  65. Oishi Y, Miyoshi H, Iuchi A, et al. Vascular aging of common carotid artery and abdominal aorta in clinically normal individuals and preclinical patients with cardiovascular risk factors: diagnostic value of two-dimensional speckle-tracking echocardiography. Heart Vessels. 2013;28:222–8.

    Article  PubMed  Google Scholar 

  66. Takayama Y, Costa KD, Covell JW. Contribution of laminar myofiber architecture to load-dependent change in mechanics of left ventricular myocardium. Am J Physiol. 2002;282:H1510–20.

    CAS  Google Scholar 

  67. Ashikaga H, Coppola BA, Hopenfeld B, et al. Transmural dispersion of myofiber mechanics. Implications for electrical heterogeneity in vivo. J Am Coll Cardiol. 2007;49:909–16.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Gallagher KP, Osakada G, Matsuzaki M, et al. Nonuniformity of inner and outer systolic wall thickening in conscious dogs. Am J Physiol. 1985;249:H241–8.

    CAS  PubMed  Google Scholar 

  69. Ishizu T, Seo Y, Enomoto Y, et al. Experimental validation of left ventricular transmural strain gradient with echocardiographic two-dimensional speckle tracking imaging. Eur J Echocardiogr. 2010;11:377–85.

    Article  PubMed  Google Scholar 

  70. Mizuguchi Y, Oishi Y, Miyoshi H, et al. The functional role of longitudinal, circumferential, and radial myocardial deformation for regulating the early impairment of left ventricular contraction and relaxation in patients with cardiovascular risk factors: a study with two-dimensional strain imaging. J Am Soc Echocardiogr. 2008;21:1138–44.

    Article  PubMed  Google Scholar 

  71. Shah AM, Solomon SD. Phenotypic and pathophysiological heterogeneity in heart failure with preserved ejection fraction. Eur Heart J. 2012;33:1716–7.

    Article  PubMed  Google Scholar 

  72. Ishizu T, Seo Y, Kameda Y, et al. Left ventricular strain and transmural distribution of structural remodeling in hypertensive heart disease. Hypertension. 2014;63:500–6.

    Article  CAS  PubMed  Google Scholar 

  73. Opdahl A, Remme EW, Helle-Valle T, et al. Determinants of left ventricular early-diastolic lengthening velocity: independent contributions from left ventricular relaxation, restoring forces, and lengthening load. Circulation. 2009;119:2578–86.

    Article  PubMed  Google Scholar 

  74. Tanaka H, Oishi Y, Mizuguchi Y, et al. Three-dimensional evaluation of dobutamine-induced changes in regional myocardial deformation in ischemic myocardium using ultrasonic strain measurements: the role of circumferential myocardial shortening. J Am Soc Echocardiogr. 2007;20:1294–9.

    Article  PubMed  Google Scholar 

  75. Mizuguchi Y, Oishi Y, Miyoshi H, et al. Concentric left ventricular hypertrophy brings deterioration of systolic longitudinal, circumferential, and radial myocardial deformation in hypertensive patients with preserved left ventricular pump function. J Cardiol. 2010;55:23–33.

    Article  PubMed  Google Scholar 

  76. Ishii K, Suyama T, Imai M, et al. Abnormal regional left ventricular systolic and diastolic function in patients with coronary artery disease undergoing percutaneous coronary intervention: clinical significance of post-ischemic diastolic stunning. J Am Coll Cardiol. 2009;54:1589–97.

    Article  PubMed  Google Scholar 

  77. Asanuma T, Fukuta Y, Masuda K, et al. Assessment of myocardial ischemic memory using speckle tracking echocardiography. JACC Cardiovasc Imaging. 2012;5:1–11.

    Article  PubMed  Google Scholar 

  78. Park SJ, Miyazaki C, Bruce CJ, et al. Left ventricular torsion by two-dimensional speckle tracking echocardiography in patients with diastolic dysfunction and normal ejection fraction. J Am Soc Echocardiogr. 2008;21:1129–37.

    Article  PubMed  Google Scholar 

  79. Mizuguchi Y, Oishi Y, Miyoshi H, et al. Possible mechanisms of left ventricular torsion evaluated by cardioreparative effects of telmisartan in patients with hypertension. Eur J Echocardiogr. 2010;11:690–7.

    Article  PubMed  Google Scholar 

  80. Tanaka H, Oishi Y, Mizuguchi Y, et al. Contribution of the pericardium to left ventricular torsion and regional myocardial function in patients with total absence of the left pericardium. J Am Soc Echocardiogr. 2008;21:268–74.

    Article  PubMed  Google Scholar 

  81. Weyman AE. The year in echocardiography. J Am Coll Cardiol. 2009;53:1558–67.

    Article  PubMed  Google Scholar 

  82. Paulus WJ, Tschöpe C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013;62:263–71.

    Article  PubMed  Google Scholar 

  83. Lim SL, Lam CSP, Segers VFM, et al. Cardiac endothelium-myocyte interaction: clinical opportunities for new heart failure therapies regardless of ejection fraction. Eur Heart J. 2015;36:2050–60.

    Article  PubMed  Google Scholar 

  84. Nakatani S. Assessment of left atrial size and function. In: Klein AL, Garcia MJ, editors. Diastology. Clinical approach to diastolic heart failure. Philadelphia: Sanders & Elsevier; 2008. p. 163–70.

    Google Scholar 

  85. Kurt M, Wang J, Torre-Amione G, et al. Left atrial function in diastolic heart failure. Circ Cardiovasc Imaging. 2009;2:10–5.

    Article  PubMed  Google Scholar 

  86. Inaba Y, Yuda S, Kobayashi N, et al. Strain rate imaging for noninvasive functional quantification of the left atrium: comparative studies in controls and patients with atrial fibrillation. J Am Soc Echocardiogr. 2005;18:729–36.

    Article  PubMed  Google Scholar 

  87. Miyoshi H, Mizuguchi Y, Oishi Y, et al. Early detection of abnormal left atrial-left ventricular-arterial coupling in preclinical patients with cardiovascular risk factors: evaluation by two-dimensional speckle-tracking echocardiography. Eur J Echocardiogr. 2011;12:431–9.

    Article  PubMed  Google Scholar 

  88. Oishi Y, Miyoshi H, Iuchi A, et al. Negative impact of cardiovascular risk factors on left atrial and left ventricular function related to aortic stiffness: new application of 2-dimensional speckle-tracking echocardiography. Circ J. 2013;77:1490–8.

    Article  PubMed  Google Scholar 

  89. Miyoshi H, Oishi Y, Mizuguchi Y, et al. Contribution of obesity to left atrial and left ventricular dysfunction in asymptomatic patients with hypertension: a two-dimensional speckle-tracking echocardiographic study. J Am Soc Hypertens. 2014;8:54–63.

    Article  PubMed  Google Scholar 

  90. Miyoshi H, Oishi Y, Mizuguchi Y, et al. Association of left atrial reservoir function with left atrial structural remodeling related to left ventricular dysfunction in asymptomatic patients with hypertension: evaluation by two-dimensional speckle-tracking echocardiography. Clin Exp Hypertens. 2015;37:155–65.

    Article  PubMed  Google Scholar 

  91. Wakami K, Ohte N, Asada K, et al. Correlation between left ventricular end-diastolic pressure and peak left atrial wall strain during left ventricular systole. J Am Soc Echocardiogr. 2009;22:847–51.

    Article  PubMed  Google Scholar 

  92. Tsang TS, Barnes ME, Gersh BJ, et al. Left atrial volume as a morphophysiologic expression of left ventricular diastolic dysfunction and relation to cardiovascular risk burden. Am J Cardiol. 2002;90:1284–9.

    Article  PubMed  Google Scholar 

  93. Ohtsuka S, Kakihana M, Watanabe H, et al. Chronically decreased aortic distensibility causes deterioration of coronary perfusion during increased left ventricular contraction. J Am Coll Cardiol. 1994;24:1406–14.

    Article  CAS  PubMed  Google Scholar 

  94. Mizuguchi Y, Oishi Y, Tanaka H, et al. Arterial stiffness is associated with left ventricular diastolic function in patients with cardiovascular risk factors: early detection with the use of cardio-ankle vascular index and ultrasonic strain imaging. J Card Fail. 2007;13:744–51.

    Article  PubMed  Google Scholar 

  95. Oki T, Miyoshi H, Oishi Y. Left atrial-left ventricular-arterial coupling: a new concept for evaluating the mechanisms of left ventricular dysfunction using 2D speckle-tracking echocardiography. Cardiac Ultrasound Today. 2012;18:193–224.

    Google Scholar 

  96. Oki T, Miyoshi H, Oishi Y, et al. The impact of hypertension as a road to heart failure with preserved ejection fraction: diagnostic value of two-dimensional speckle tracking echocardiography for the early impairment of left atrial-left ventricular-arterial coupling. Curr Hypertens Rev. 2014;10:177–88.

    Article  PubMed  Google Scholar 

  97. Tsuchihashi-Makaya M, Hamaguchi S, Kinugawa S, et al. Characteristics and outcomes of hospitalized patients with heart failure and reduced vs preserved ejection fraction. Report from the Japanese Cardiac Registry of Heart Failure in Cardiology (JCARE-CARD). Circ J. 2009;73:1893–900.

    Article  PubMed  Google Scholar 

  98. Kokubu N, Yuda S, Tsuchihashi K, et al. Noninvasive assessment of left atrial function by strain rate imaging in patients with hypertension: a possible beneficial effect of renin-angiotensin system inhibition on left atrial function. Hypertens Res. 2007;30:13–21.

    Article  PubMed  Google Scholar 

  99. Mizuguchi Y, Oishi Y, Miyoshi H, et al. Impact of statin therapy on left ventricular function and carotid arterial stiffness in patients with hypercholesterolemia. Circ J. 2008;72:538–44.

    Article  PubMed  Google Scholar 

  100. Mizuguchi Y, Oishi Y, Miyoshi H, et al. Beneficial effects of telmisartan on left ventricular structure and function in patients with hypertension determined by two-dimensional strain imaging. J Hypertens. 2009;27:1892–9.

    Article  CAS  PubMed  Google Scholar 

  101. Oki T. The role of tissue Doppler imaging as a new diagnostic option in evaluating left ventricular function. J Echocardiogr. 2003;1:29–42.

    Article  Google Scholar 

  102. Yamada H, Klein AL. Diastology 2010: clinical approach to diastolic heart failure. J Echocardiogr. 2010;8:65–79.

    Article  PubMed  Google Scholar 

  103. Nakatani S, Mikami T, Kitabatake A. Doppler echocardiography in diastology: 35 years of Japanese contribution to its advancement and utility. J Echocardiogr. 2011;9:1–8.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to cooperation and support of our colleagues in the echocardiography team at the Second Department of Internal Medicine, Tokushima University Faculty of Medicine, and Higashi Tokushima Medical Center, National Hospital Organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Oki.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oki, T., Miyoshi, H., Oishi, Y. et al. Challenges for ‘diastology’: contributions from Japanese researchers. J Echocardiogr 14, 93–103 (2016). https://doi.org/10.1007/s12574-016-0307-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12574-016-0307-3

Keyword

Navigation