Skip to main content

Advertisement

Log in

Carotid atherosclerosis is associated with left ventricular diastolic function

  • Original Investigation
  • Published:
Journal of Echocardiography Aims and scope Submit manuscript

Abstract

Background

It has been reported that carotid intima-media thickness (IMT) correlates with the risk of stroke or cardiovascular disease. The purpose of this study was to analyze the relationships between echocardiographic findings and carotid atherosclerosis.

Methods

A total of 234 patients (62 ± 15 years) were referred for echocardiography to evaluate the left ventricular (LV) function. The LV ejection fraction, the ratio of the peak velocity of early rapid filling and the peak velocity of atrial filling (E/A), and the peak early diastolic mitral annular velocity (e′) were obtained by echocardiography. The maximum IMT (Max-IMT) and plaque score (PS) were measured by carotid ultrasonography within 1 month of the echocardiographic examination.

Results

The mean values of Max-IMT and carotid PS were 2.41 ± 1.23 mm and 8.5 ± 6.3, respectively. The decreased mean E/A (0.94 ± 0.39) and mitral e′ (5.5 ± 1.9 cm/s) indicated LV diastolic dysfunction. A good correlation was observed between Max-IMT and PS (r = 0.83, p < 0.0001). It was shown that 2.8 mm of Max-IMT was equivalent to 10.1 of carotid PS, which indicated severe carotid atherosclerosis. In multiple logistic stepwise regression analysis, among the echocardiographic parameters, only e′ was independently associated with severe carotid atherosclerosis (Max-IMT ≥ 2.8 mm or PS ≥ 10.1).

Conclusions

The present study demonstrated that decreased early diastolic mitral annular velocity relates to the parameter reflecting carotid atherosclerosis. Therefore, the presence of severe carotid atherosclerosis may affect LV diastolic dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Prati P, Tosetto A, Vanuzzo D, et al. Carotid intima media thickness and plaques can predict the occurrence of ischemic cerebrovascular events. Stroke. 2008;39:2470–6.

    Article  PubMed  Google Scholar 

  2. Nambi V, Chambless L, Folson AR, et al. Carotid intima-media thickness and presence or absence of plaque improves prediction of coronary heart disease risk: the ARIC (Atherosclerosis Risk in Communities) study. J Am Coll Cardiol. 2010;55:1600–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Den Ruijter HM, Peters SAE, Anderson T, et al. Common carotid intima-media thickness measurements in cardiovascular risk prediction a meta-analysis. JAMA. 2012;308:796–803.

    Article  Google Scholar 

  4. Polak JF, Pencina MJ, Pencina KM, et al. Carotid-wall intima-media thickness and cardiovascular events. N Engl J Med. 2011;365:213–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Naqvi T, Lee MS. Carotid intima-media thickness and plaque in cardiovascular risk assessment. J Am Coll Cardiol Img. 2014;7:1025–38.

    Article  Google Scholar 

  6. Laurent S, Boutouyrie P, Asmer R, et al. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension. 2001;37:1236–41.

    Article  CAS  PubMed  Google Scholar 

  7. Shoji T, Emoto M, Shinohara K, et al. Diabetes mellitus, aortic stiffness, and cardiovascular mortality in end-stage renal disease. J Am Soc Nephrol. 2001;12:2117–24.

    CAS  PubMed  Google Scholar 

  8. Wang KL, Cheng HM, Sung SH, et al. Wave reflection and arterial stiffness in the prediction of 15-year all-cause and cardiovascular mortalities. A community-based study. Hypertension. 2010;55:799–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shoji T, Maekawa k, Emoto M, et al. Arterial stiffness predicts cardiovascular death independent of arterial thickness in a cohort of hemodialysis patients. Atherosclerosis. 2010;2010:145–9.

    Article  Google Scholar 

  10. Vinereanu D, Nicolaides E, Boden L, et al. Conduit arterial stiffness is associated with impaired left ventricular subendocardial function. Heart. 2003;89:449–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yambe M, Tomiyama H, Hirayama Y, et al. Arterial stiffening as a possible risk factor for both atherosclerosis and diastolic heart failure. Hypertens Res. 2004;27:625–31.

    Article  PubMed  Google Scholar 

  12. Eren M, Gorgulu S, Uslu N, et al. Relation between aortic stiffness and left ventricular diastolic function in patients with hypertension, diabetes, or both. Heart. 2004;90:37–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mottram PM, Haluska BA, Leano R, et al. Relation of arterial stiffness to diastolic dysfunction in hypertensive heart disease. Heart. 2005;91:1551–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Crouse JR, Harpold GH, Kahl FR, et al. Evaluation of a scoring system for extracranial carotid atherosclerosis extent with B-mode ultrasound. Stroke. 1986;17:270–5.

    Article  CAS  PubMed  Google Scholar 

  15. Handa N, Matsumoto M, Maeda H, et al. Ultrasonic evaluation of early carotid atherosclerosis. Stroke. 1990;21:1567–72.

    Article  CAS  PubMed  Google Scholar 

  16. Lester SJ, Ryan EW, Schiller NB, et al. Best method in clinical practice and in research studies to determine left atrial size. Am J Cardiol. 1999;84:829–32.

    Article  CAS  PubMed  Google Scholar 

  17. Devereux RB, Reicheck N. Echocardiographic determination of left ventricular mass in man: anatomic validation of the method. Circulation. 1977;55:613–8.

    Article  CAS  PubMed  Google Scholar 

  18. Poli A, Tremoli E, Colombo A, et al. Ultrasonographic measurement of the common carotid artery wall thickness in hypercholesterolemic patients: a new model for the quantitation and follow-up of preclinical atherosclerosis in living human subjects. Atherosclerosis. 1988;70:253–6.

    Article  CAS  PubMed  Google Scholar 

  19. O’Leary DH, Polak JF, Kronmal RA, et al. Distribution and correlates of sonographically detected carotid artery disease in the Cardiovascular Health Study. Stroke. 1992;23:1752–60.

    Article  PubMed  Google Scholar 

  20. Bots ML, Breslau PJ, Briet E, et al. Cardiovascular determinants of carotid artery disease: the Rotterdam Elderly Study. Hypertension. 1992;19:717–20.

    Article  CAS  PubMed  Google Scholar 

  21. Burke GL, Evans GW, Riley WA, et al. Arterial wall thickness is associated with prevalent cardiovascular disease in middle-aged adults: the atherosclerosis risk in communities (ARIC) Study. Stroke. 1995;26:386–91.

    Article  CAS  PubMed  Google Scholar 

  22. Mannami T, Konishi M, Baba S, et al. Prevalence of asymptomatic carotid atherosclerotic lesions detected by high-resolution ultrasonography and its relation to cardiovascular risk factors in the general population of a Japanese city: the Suita study. Stroke. 1997;28:518–25.

    Article  CAS  PubMed  Google Scholar 

  23. Allan PL, Mowbray PI, Lee AJ, et al. Relationship between carotid intima-media thickness and symptomatic and asymptomatic peripheral arterial disease: the Edinburgh Artery Study. Stroke. 1997;28:348–53.

    Article  CAS  PubMed  Google Scholar 

  24. O’Leary DH, Polak JF, Kronmal RA, et al. Carotid artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. N Engl J Med. 1999;340:14–22.

    Article  PubMed  Google Scholar 

  25. Lorenz MW, Markus HS, Bots ML, et al. Prediction of clinical cardiovascular events with carotid intima-media thickness: a systematic review and mete-analysis. Circulation. 2007;115:459–67.

    Article  PubMed  Google Scholar 

  26. Joint committee with the guidelines subcommittee of the Japan Academy of Neurosonology for ultrasonic assessment of carotid artery disease and the subcommittee for research into methods of screening atherosclerotic lesions. Guidelines for ultrasonic assessment of carotid artery disease: Preliminary report. Neurosonology. 2002;15:20–30.

  27. Tanaka H, Nishino M, Ishida M, et al. Progression of carotid atherosclerosis in Japanese patients with coronary artery disease. Stroke. 1992;23:946–51.

    Article  CAS  PubMed  Google Scholar 

  28. Handa N, Matsumoto M, Maeda H, et al. Ischemic stroke events and carotid atherosclerosis: results of the Osaka follow-up study for ultrasonographic assessment of carotid atherosclerosis (the OSACA study). Stroke. 1995;26:17815.

    Article  Google Scholar 

  29. Handa N, Okazaki Y, Itoh T, et al. Ultrasonographic characterization of carotid plaque and implications for ischemic cerebrovascular events. Neurosonology. 2000;13:170–4.

    Article  Google Scholar 

  30. Sohn DW, Chai IH, Lee DJ, et al. Assessment of mitral annulus velocity by Doppler tissue imaging in the evaluation of left ventricular diastolic function. J Am Coll Cardiol. 1977;30:474–80.

    Article  Google Scholar 

  31. Ommen SR, Nishimura RA, Appleton CP, et al. Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: a comparative simultaneous Doppler-catheterization study. Circulation. 2000;102:1788–94.

    Article  CAS  PubMed  Google Scholar 

  32. Nagueh SF, Sun H, Kopelen HA, et al. Hemodynamic determinants of the mitral annulus diastolic velocities by tissue Doppler. J Am Coll Cardiol. 2001;37:278–85.

    Article  CAS  PubMed  Google Scholar 

  33. Kasner M, Westermann D, Steendijk P, et al. Utility of Doppler echocardiography and tissue Doppler imaging in the estimation of diastolic function in heart failure with normal ejection fraction: a comparative Doppler-conductance catheterization study. Circulation. 2007;116:637–47.

    Article  PubMed  Google Scholar 

  34. Tomiyama H, Yamashina A, Arai T, et al. Influences of age and gender on results of noninvasive brachial-ankle pulse wave velocity measurement: a survey of 12,517 subjects. Atherosclerosis. 2003;166:303e9.

    Google Scholar 

  35. Yambe T, Meng X, Hou X, et al. Cardio-ankle vascular index (CAVI) for the monitoring of the atherosclerosis after heart transplantation. Biomed Pharmacother. 2005;59:177e9.

    Google Scholar 

  36. Shirai K, Utino J, Otsuka K, et al. A novel blood pressure independent arterial wall stiffness parameter; cardio-ankle vascular index (CAVI). J Atheroscler Thromb. 2006;13:101e7.

    Article  Google Scholar 

  37. Kubozono T, Miyata M, Ueyama K, et al. Clinical significance and reproducibility of new arterial distensibility index. Circ J. 2007;71:89e94.

    Article  Google Scholar 

  38. Takaki A, Ogawa H, Wakeyama T, et al. Cardio-ankle vascular index is a new noninvasive parameter of arterial stiffness. Circ J. 2007;71:1710–4.

    Article  CAS  PubMed  Google Scholar 

  39. Okura T, Watanabe S, Kurata M, et al. Relationship between carotid-ankle vascular index (CAVI) and carotid atherosclerosis in patients with essential hypertension. Hypertens Res. 2007;30:335–40.

    Article  PubMed  Google Scholar 

  40. Nakamura K, Tomaru T, Yamamura S, et al. Cardio-ankle vascular index is a candidate predictor of coronary atherosclerosis. Circ J. 2008;72:598–604.

    Article  PubMed  Google Scholar 

  41. Ibata J, Sasaki H, Kakimoto T, et al. Cardio-ankle vascular index measures arterial wall stiffness independent of blood pressure. Diabetes Res Clin Pract. 2008;80:265–70.

    Article  PubMed  Google Scholar 

  42. Kadota K, Takamura N, Aoyagi K, et al. Availability of cardio-ankle vascular index (CAVI) as a screening tool for atherosclerosis. Circ J. 2008;72:304–8.

    Article  PubMed  Google Scholar 

  43. Izuhara M, Shioji K, Kadota S, et al. Relationship of cardio-ankle vascular index (CAVI) to carotid and coronary arteriosclerosis. Circ J. 2008;72:1762–7.

    Article  CAS  PubMed  Google Scholar 

  44. Takaki A, Ogawa H, Wakeyama T, et al. Cardio-ankle vascular index is superior to brachial-ankle pulse wave velocity as an index of arterial stiffness. Hypertens Res. 2008;31:13747–55.

    Article  Google Scholar 

  45. O’Rourke MF. Diastolic heart failure, diastolic left ventricular dysfunction and exercise intolerance. J Am Coll Cardiol. 2001;38:803–5.

    Article  PubMed  Google Scholar 

  46. Leite-Moreira AF, Correia-Pinto J, Gillebert TC. Afterload induced changes in myocardial relaxation: a mechanism for diastolic dysfunction. Cardiovasc Res. 1999;43:344–53.

    Article  CAS  PubMed  Google Scholar 

  47. Takiuchi S, Kamide K, Miwa Y, et al. Diagnostic value of carotid intima-media thickness and plaque score for predicting target organ damage in patients with essential hypertension. J Hum Hypertens. 2004;18:17–23.

    Article  CAS  PubMed  Google Scholar 

  48. Eren M, Gorgulu S, Uslu N, et al. Relation between aortic stiffness and left ventricular diastolic function in patients with hypertension, diabetes, or both. Heart. 2004;90:37–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Di Bello V, Pedrinelli R, Bianchi M, et al. Ultrasonic myocardial texture in hypertensive mild-to-moderate left ventricular hypertrophy: a videodensitometric study. Am J Hypertens. 1998;11:155–64.

    Article  PubMed  Google Scholar 

  50. Geroulakos G, O’Gorman DJ, Kalodiki E, et al. The carotid intima-media thickness as a marker of the presence of severe symptomatic coronary artery disease. Eur Heart J. 1994;15:781–5.

    CAS  PubMed  Google Scholar 

  51. Crouse JR III, Craven TE, Hagaman AP, et al. Association of coronary disease with segment-specific intimal-medial thickening of the extracranial carotid artery. Circulation. 1995;92:1141–7.

    Article  PubMed  Google Scholar 

  52. Sugo A, Nakajima S, Kurata T, et al. Ultrasonographic assessment of carotid atherosclerosis emphasizing the variety of intimal-medial thickness and the relationship with coronary risk factors. J Cardiol. 1997;30:321–9.

    CAS  PubMed  Google Scholar 

  53. Hodis HN, Mack WJ, LaBree L, et al. The role of carotid arterial intima-media thickness in predicting clinical coronary events. Ann Intern Med. 1998;128:262–9.

    Article  CAS  PubMed  Google Scholar 

  54. Balbarini A, Buttitta F, Limbruno U, et al. Usefulness of carotid intima-media thickness measurement and peripheral B-mode ultrasound scan in the clinical screening of patients with coronary artery disease. Angiology. 2000;51:269–79.

    Article  CAS  PubMed  Google Scholar 

  55. del Sol AI, Moons KG, Hollander M, et al. Is carotid intima-media thickness useful in cardiovascular disease risk assessment? Rotterdam Study Stroke. 2001;32:1532–8.

    PubMed  Google Scholar 

  56. Ogata T, Yasaka M, Yamagishi M, et al. Atherosclerosis found on carotid ultrasonography is associated with atherosclerosis on coronary intravascular ultrasonography. J Ultrasound Med. 2005;24:459–74.

    Google Scholar 

  57. Takiuchi S, Rakugi H, Fujii H, et al. Carotid intima-media thickness is correlated with impairment of coronary flow reserve in hypertensive patients without coronary artery disease. Hypertens Res. 2003;26:945–51.

    Article  PubMed  Google Scholar 

  58. Dart AM, Kingwell BA. Pulse pressure: a review of mechanisms and clinical relevance. J Am Coll Cardiol. 2001;37:975–84.

    Article  CAS  PubMed  Google Scholar 

  59. London GM, Guerin AP. Influence of arterial pulse and reflected waves on blood pressure and cardiac function. Am Heart J. 1999;138:220–4.

    Article  CAS  PubMed  Google Scholar 

  60. Hittinger L, Shannon RP, Bishop SP, et al. Subendomyocardial exhaustion of blood flow reserve and increased fibrosis in conscious dogs with heart failure. Circ Res. 1989;65:971–80.

    Article  CAS  PubMed  Google Scholar 

  61. Ohtsuka S, Kakihana M, Watanabe H, et al. Chronically decreased aortic distensibility causes deterioration of coronary perfusion during increased left ventricular contraction. J Am Coll Cardiol. 1994;24:1406–14.

    Article  CAS  PubMed  Google Scholar 

  62. Watanabe H, Ohtsuka S, Kakihana M, et al. Coronary circulation in dogs with an experimental decrease in aortic compliance. J Am Coll Cardiol. 1993;21:1497–506.

    Article  CAS  PubMed  Google Scholar 

  63. Eghbali M, Eghbali M, Robinson TF, et al. Collagen accumulation in heart ventricles as a function of growth and aging. Cardiovasc Res. 1989;23:723–9.

    Article  CAS  PubMed  Google Scholar 

  64. Varagic J, Susic D, Frohlich E. Heart, aging, and hypertension. Curr Opin Cardiol. 2001;16:336–41.

    Article  CAS  PubMed  Google Scholar 

  65. Tomanek RJ. Effects of age and exercise on the extent of the myocardial capillary bed. Anat Rec. 1970;167:55–62.

    Article  CAS  PubMed  Google Scholar 

  66. Anversa P, Palackal T, Sonnenblick EH, et al. Myocite cell loss and myocite cellular hyperplasia in the hypertrophied aging rat heart. Circ Res. 1990;67:871–85.

    Article  CAS  PubMed  Google Scholar 

  67. Spagnoli LG, Orlandi A, Mauriello A, et al. Aging and atherosclerosis in the rabbit: 1. distribution, prevalence and morphology of atherosclerotic lesions. Atherosclerosis. 1991;89:11–24.

    Article  CAS  PubMed  Google Scholar 

  68. Nakamura M, Abe S, Kinukawa N. Casual relationship between occlusive lesions of coronary artery and myocardial fibrosis in arteriosclerotic rabbits-differences between cholesterol-fed and heritable hyperlipidemic rabbits. Atherosclerosis. 1996;124:37–47.

    Article  CAS  PubMed  Google Scholar 

  69. Orlandi A, Francesconi A, Marcellini M, et al. Role of ageing and coronary atherosclerosis in the development of cardiac fibrosis in the rabbit. Cardiovasc Res. 2004;64:544–52.

    Article  CAS  PubMed  Google Scholar 

  70. Reed AL, Tanaka A, Sorescu D, et al. Diastolic dysfunction is associated with cardiac fibrosis in the senescence-accelerated mouse. Am J Physiol Heart Circ Physiol. 2011;301:H824–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kuwahara F, Kai H, Tokuda K, et al. Hypertensive myocardial fibrosis and diastolic dysfunction. Another model of inflammation? Hypertension. 2004;43:739–45.

    Article  CAS  PubMed  Google Scholar 

  72. Brilla CG, Janicki JS, Weber KT. Impaired diastolic function and coronary reserve in genetic hypertension. Role of interstitial fibrosis and medial thickening of intramyocardial coronary arteries. Circ Res. 1991;69:107–15.

    Article  CAS  PubMed  Google Scholar 

  73. Martos R, Baugh J, Ledwidge M, et al. Diastolic heart failure. Evidence of increased myocardial collagen turnover linked to diastolic dysfunction. Circulation. 2007;115:888–95.

    Article  PubMed  Google Scholar 

  74. Kasner M, Westermann D, Lopez B, et al. Diastolic tissue Doppler indexes correlate with the degree of collagen expression and cross-linking in heart failure and normal ejection fraction. J Am Coll Cardiol. 2011;57:977–85.

    Article  CAS  PubMed  Google Scholar 

  75. Leung MCH, Meredith IT, Cameron JD. Aortic stiffness affects the coronary blood flow response to percutaneous coronary intervention. Am J Physiol. 2006;290:H624–30.

    CAS  Google Scholar 

  76. Tsioufis C, Chatzis D, Dimitriadis K, et al. Left ventricular diastolic dysfunction is accompanied by increased aortic stiffness in the early stages of essential hypertension: a TDI approach. J Hypertens. 2005;23:1745–50.

    Article  CAS  PubMed  Google Scholar 

  77. Tsioufis C, Chatzis D, Dimitridis K, et al. Left ventricular dysfunction is accompanied by increased aortic stiffness in the early stages of essential hypertension: a TDI approach. J Hypertens. 2005;23:1745–50.

    Article  CAS  PubMed  Google Scholar 

  78. Litwin SE, Katz SE, Weinberg EO, et al. Serial echocardiographic-Doppler assessment of left ventricular geometry and function in rats with pressure-overload hypertrophy. Chronic angiotensin-converting enzyme inhibition attenuates the transition to heart failure. Circulation. 1995;91:2642–54.

    Article  CAS  PubMed  Google Scholar 

  79. Nicoletti A, Michel JB. Cardiac fibrosis and inflammation: interaction with hemodynamic and hormonal factors. Cardiovasc Res. 1999;41:532–43.

    Article  CAS  PubMed  Google Scholar 

  80. Querejeta R, Varo N, Lopez B, et al. Serum carboxy-terminal propeptide of procollagen type I is a marker of myocardial fibrosis in hypertensive heart disease. Circulation. 2000;101:1729–35.

    Article  CAS  PubMed  Google Scholar 

  81. Kasner M, Westermann D, Lopez B, et al. Diastolic tissue Doppler indexes correlate with the degree of collagen expression and cross-linking in heart failure and normal ejection fraction. J Am Coll Cardiol. 2011;57:977–85.

    Article  CAS  PubMed  Google Scholar 

  82. Tanaka M, Fujiwara H, Onodera T, et al. Quantitative analysis of myocardial fibrosis in normal, hypertensive hearts, and hypertrophic cardiomyopathy. Br Heart J. 1986;55:575–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Anversa P, Palackal T, Sonnenblick EH, et al. Myocyte cell loss and myocyte cellular hyperplasia in the hypertrophied aging rat heart. Circ Res. 1990;67:871–85.

    Article  CAS  PubMed  Google Scholar 

  84. Tomanek RJ, Aydelotte MR, Torry RJ. Remodeling of coronary vessels during aging in purebred beagles. Circ Res. 1991;69:1068–74.

    Article  CAS  PubMed  Google Scholar 

  85. Anversa P, Li P, Sonnenblick EH, Olivetti G. Effects of aging on quantitative structural properties of coronary vasculature and microvasculature in rats. Am J Physiol Heart Circ Physiol. 1994;267:H1062–73.

    CAS  Google Scholar 

  86. Venkatesh BA, Volpe GJ, Donekal S, et al. Association of longitudinal changes in left ventricular structure and function with myocardial fibrosis. The Multi-Ethnic study of atherosclerosis study. Hypertension. 2014;64:508–15.

    Article  PubMed Central  Google Scholar 

  87. Dhalla NS, Liu X, Panagia V, et al. Subcellular remodeling and heart dysfunction in chronic diabetes. Cardiovasc Res. 1998;40:239–47.

    Article  CAS  PubMed  Google Scholar 

  88. Aronson D. Cross-linking of glycated collagen in the pathogenesis of arterial and myocardial stiffening of aging and diabetes. J Hypertens. 2003;21:3–12.

    Article  CAS  PubMed  Google Scholar 

  89. Fang ZY, Prins JB, Marwick TH. Diabetic cardiomyopathy: evidence, mechanisms and therapeutic implications. Endocr Rev. 2004;25:543–67.

    Article  CAS  PubMed  Google Scholar 

  90. Qureshi G, Brown R, Salciccioli L, et al. Relationship between aortic atherosclerosis and non-invasive measures of arterial stiffness. Atherosclerosis. 2007;195:e190–4.

    Article  CAS  PubMed  Google Scholar 

  91. Mizushige K, Yao L, Noma T, et al. Alteration in left ventricular diastolic filling and accumulation of myocardial collagen at insulin-resistant prediabetic stage of a type II diabetic rat model. Circulation. 2000;101:899–907.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiko Harada.

Ethics declarations

Conflict of interest

Masahiko Harada and Satoshi Tabako declare that they have no conflicts of interest.

Human rights statements and informed consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1964 and later revisions. Informed consent was obtained from all patients for being included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harada, M., Tabako, S. Carotid atherosclerosis is associated with left ventricular diastolic function. J Echocardiogr 14, 120–129 (2016). https://doi.org/10.1007/s12574-016-0296-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12574-016-0296-2

Keywords

Navigation