Skip to main content
Log in

Three-dimensional echocardiography: a new paradigm shift

  • Review Article
  • Published:
Journal of Echocardiography Aims and scope Submit manuscript

Abstract

Significant advances in three-dimensional echocardiography (3DE) have made this modality a powerful diagnostic tool in the cardiology clinic. It can provide accurate and reliable measurements of chamber size and function. In addition, 3DE offers novel views and comprehensive anatomic definition of valvular and congenital abnormalities by rendering 3D contoured images of the structures. It is also useful in monitoring the effectiveness of surgical or percutaneous transcatheter interventions. With demonstrations of efficacy in various clinical settings, 3DE has become a complementary part of the routine diagnostic armamentarium. However, 3DE is regarded as simply a tool for 3D volume or image rendering. If we confine the role of 3DE to this, it will remain a complementary tool to two-dimensional echocardiography (2DE) in the future. Three-dimensional echocardiography has roles beyond 3D volume or image rendering. Three-dimensional echocardiography can acquire a full volume dataset in a single shot, and with combined use of the multiplanar reconstructive mode, it can provide anatomically well-defined 2D planes from the full volume dataset. Hence, by omitting routine 2DE work, 3DE may save time for image acquisition and allow more precise and reproducible review or measurement. Taking this perspective into account, 3DE can be a suitable modality for use as a substitute for 2DE in daily practice. With further advances of 3DE and development of a unified review system capable of display and geometrical assessment of 2D as well as 3D images, 3DE will represent a new paradigm shift in echocardiographic examination in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Schiller NB, Acquatella H, Ports TA, et al. Left ventricular volume from paired biplane two-dimensional echocardiography. Circulation. 1979;60:547–55.

    Article  CAS  PubMed  Google Scholar 

  2. Schiller NB, Shah PM, Crawford M, et al. Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on standards, subcommittee on quantitation of two-dimensional echocardiograms. J Am Soc Echocardiogr. 1989;2:358–67.

    CAS  PubMed  Google Scholar 

  3. Sapin PM, Schröeder KM, Gopal AS, Smith MD, King DL. Three-dimensional echocardiography: limitations of apical biplane imaging for measurement of left ventricular volume. J Am Soc Echocardiogr. 1995;8:576–84.

    Article  CAS  PubMed  Google Scholar 

  4. King D, Harrison M, King DL, et al. Improved reproducibility of left atrial and left ventricular measurements by guided three-dimensional echocardiography. J Am Coll Cardiol. 1992;20:1238–45.

    Article  CAS  PubMed  Google Scholar 

  5. Jenkins C, Moir S, Chan J, Rakhit D, Haluska B, Marwick TH. Left ventricular volume measurement with echocardiography: a comparison of left ventricular opacification, three-dimensional echocardiography, or both with magnetic resonance imaging. Eur Heart J. 2009;30:98–106.

    Article  PubMed  Google Scholar 

  6. Caiani EG, Corsi C, Zamorano J, et al. Improved semiautomated quantification of left ventricular volumes and ejection fraction using 3-dimensional echocardiography with a full matrix-array transducer: comparison with magnetic resonance imaging. J Am Soc Echocardiogr. 2005;18:779–88.

    Article  PubMed  Google Scholar 

  7. Hung J, Lang R, Flachskampf F, et al. 3D Echocardiography: a review of the current status and future directions. J Am Soc Echocardiogr. 2007;20:213–33.

    Article  PubMed  Google Scholar 

  8. Rossi A, Cicoira M, Zanolla L, et al. Determinants and prognostic value of left atrial volume in patients with dilated cardiomyopathy. J Am Coll Cardiol. 2002;40:1425.

    Article  PubMed  Google Scholar 

  9. De Castro S, Caselli S, Di Angelantonio E, et al. Relation of left atrial maximal volume measured by real-time 3D echocardiography to demographic, clinical, and Doppler variables. Am J Cardiol. 2008;101:1347–52.

    Article  PubMed  Google Scholar 

  10. Suh IW, Song JM, Lee EY, et al. Left atrial volume measured by real-time 3-dimensional echocardiography predicts clinical outcomes in patients with severe left ventricular dysfunction and in sinus rhythm. J Am Soc Echocardiogr. 2008;21:439–45.

    Article  PubMed  Google Scholar 

  11. Adams DH, Rosenhek R, Falk V. Degenerative mitral valve regurgitation: best practice revolution. Eur Heart J. 2010;31:1958–67.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Von Ramm OT, Smith SW. Real time volumetric ultrasound imaging system. J Digit Imaging. 1990;3:261–6.

    Article  Google Scholar 

  13. Sugeng L, Shernan SK, Weinert L, et al. Real-time three-dimensional transesophageal echocardiography in valve disease: comparison with surgical findings and evaluation of prosthetic valves. J Am Soc Echocardiogr. 2008;21:1347–54.

    Article  PubMed  Google Scholar 

  14. Grewal J, Mankad S, Freeman WK, et al. Real-time three-dimensional transesophageal echocardiography in the intraoperative assessment of mitral valve disease. J Am Soc Echocardiogr. 2009;22:34–41.

    Article  PubMed  Google Scholar 

  15. Baker GH, Shirali G, Ringewald JM, Hsia TY, Bandisode V. Usefulness of live three-dimensional transesophageal echocardiography in a congenital heart disease center. Am J Cardiol. 2009;103:1025–8.

    Article  PubMed  Google Scholar 

  16. Whitlow PL, Feldman T, Pedersen WR, et al. Acute and 12-month results with catheter-based mitral valve leaflet repair: the EVEREST II (endovascular valve edge-to-edge repair) high risk study. J Am Coll Cardiol. 2012;59:130–9.

    Article  PubMed  Google Scholar 

  17. Bhan A, Kapetanakis S, Pearson P, Dworakowski R, Monaghan MJ. Percutaneous closure of an atrial septal defect guided by live three-dimensional transesophageal echocardiography. J Am Soc Echocardiogr. 2009;22:753.e1-3.

    Google Scholar 

  18. Altiok E, Becker M, Hamada S, et al. Real-time 3D TEE allows optimized guidance of percutaneous edge-to-edge repair of the mitral valve. JACC Cardiovasc Imaging. 2010;3:1196–8.

    Article  PubMed  Google Scholar 

  19. Filgueiras-Rama D, López T, Moreno-Gómez R, Calvo-Orbe L, et al. 3D transesophageal echocardiographic guidance and monitoring of percutaneous aortic valve replacement. Echocardiography. 2010;27:84–6.

    Article  PubMed  Google Scholar 

  20. Lang RM, Badano LP, Tsang W, et al. EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography. Eur Heart J Cardiovasc Imaging. 2012;13:1–46.

    Article  PubMed  Google Scholar 

  21. Sugeng L, Coon P, Weinert L, et al. Use of real-time 3-dimensional transthoracic echocardiography in the evaluation of mitral valve disease. J Am Soc Echocardiogr. 2006;19:413–21.

    Article  PubMed  Google Scholar 

  22. Ahmed S, Nanda NC, Miller AP, et al. Usefulness of transesophageal three-dimensional echocardiography in the identification of individual segment/scallop prolapse of the mitral valve. Echocardiography. 2003;20:203–9.

    Article  PubMed  Google Scholar 

  23. Abo K, Hozumi T, Fukuda S, et al. Usefulness of transthoracic freehand three-dimensional echocardiography for the evaluation of mitral valve prolapse. J Cardiol. 2004;43:17–22.

    PubMed  Google Scholar 

  24. Beraud AS, Schnittger I, Miller DC, Liang DH. Multiplanar reconstruction of three-dimensional transthoracic echocardiography improves the presurgical assessment of mitral prolapse. J Am Soc Echocardiogr. 2009;22:907–13.

    Article  PubMed  Google Scholar 

  25. Bharucha T, Roman KS, Anderson RH, Vettukattil JJ. Impact of multiplanar review of three-dimensional echocardiographic data on management of congenital heart disease. Ann Thorac Surg. 2008;86:875–81.

    Article  PubMed  Google Scholar 

  26. Bharucha T, Ho SY, Vettukattil JJ. Multiplanar review analysis of three dimensional echocardiographic datasets gives new insights into the morphology of subaortic stenosis. Eur J Echocardiogr. 2008;9:614–20.

    Article  PubMed  Google Scholar 

  27. Messika-Zeitoun D, Brochet E, Holmin C, et al. Three-dimensional evaluation of the mitral valve area and commissural opening before and after percutaneous mitral commissurotomy in patients with mitral stenosis. Eur Heart J. 2007;28:72–9.

    Article  PubMed  Google Scholar 

  28. Hatle L, Angelsen B, Tromsdal A. Noninvasive assessment of atrioventricular pressure half-time by Doppler ultrasound. Circulation. 1979;60:1096–104.

    Article  CAS  PubMed  Google Scholar 

  29. Oh JK, Taliercio CP, Holmes DR Jr, et al. Prediction of the severity of aortic stenosis by Doppler aortic valve area determination: prospective Doppler-catheterization correlation in 100 patients. J Am Coll Cardiol. 1988;11:1227–34.

    Article  CAS  PubMed  Google Scholar 

  30. Anderson RH, Freedom RM. Normal and abnormal structure of the ventriculo-arterial junctions. Cardiol Young. 2005;15(Suppl 1):3–16.

    PubMed  Google Scholar 

  31. Asante-Korang A, Anderson RH. Echocardiographic assessment of the aortic valve and left ventricular outflow tract. Cardiol Young. 2005;15(Suppl 1):27–36.

    Article  PubMed  Google Scholar 

  32. Yiu SF, Enriquez-Sarano M, Tribouilloy C, Seward JB, Tajik AJ. Determinants of the degree of functional mitral regurgitation in patients with systolic left ventricular dysfunction: a quantitative clinical study. Circulation. 2000;102:1400–6.

    Article  CAS  PubMed  Google Scholar 

  33. Pai RG, Varadarajan P, Tanimoto M. Effect of atrial fibrillation on the dynamics of mitral annular area. J Heart Valve Dis. 2003;12:31–7.

    PubMed  Google Scholar 

  34. Kwan J, Shiota T, Agler DA, et al. Geometric differences of the mitral apparatus between ischemic and dilated cardiomyopathy with significant mitral regurgitation: real-time three-dimensional echocardiography study. Circulation. 2003;107:1135–40.

    Article  PubMed  Google Scholar 

  35. Song JM, Qin JX, Kongsaerepong V, et al. Determinants of ischemic mitral regurgitation in patients with chronic anterior wall myocardial infarction: a real time three-dimensional echocardiography study. Echocardiography. 2006;23:650–7.

    Article  PubMed  Google Scholar 

  36. Choi WG, Kim SH, Park SD, et al. Role of dyssynchrony on functional mitral regurgitation in patients with idiopathic dilated cardiomyopathy: a comparison study with geometric parameters of mitral apparatus. J Cardiovasc Ultrasound. 2011;19:69–75.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of interest

I do not have any financial relationships with any company or any other biases or conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Kwan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwan, J. Three-dimensional echocardiography: a new paradigm shift. J Echocardiogr 12, 1–11 (2014). https://doi.org/10.1007/s12574-013-0189-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12574-013-0189-6

Keywords

Navigation