Skip to main content
Log in

Unsteady flow of a ternary hybrid nanofluid over an inclined flat plate when Ohmic heating and quadratic thermal radiation are significant: couple stress model with shape factor analysis

  • Published:
International Journal of Advances in Engineering Sciences and Applied Mathematics Aims and scope Submit manuscript

Abstract

The investigation of the flow of pair stress fluid over an inclined flat plate has garnered considerable interest in recent times owing to its extensive applicability in diverse domains such as engineering, fluid mechanics, and heat transfer. This work theoretically investigates the steady and dissipative flow of a ternary hybrid nanofluid (composed of Ethylene Glycol, Copper (II) oxide, Titanium dioxide, and Silica) over a tilted flat plate. The analysis takes into account quadratic thermal radiation, Ohmic heating, and irreversibility. We transformed the problem’s equations into a set of ordinary differential equations and solved them using the bvp4c solver. The results are shown for two instances of shape factors, namely cylindrical and brick. The results pertaining to the engineering factors of interest are elucidated through the utilisation of multiple linear regression. An increase in the couple stress parameter (\(Cs\)) is shown to result in an elevation in fluid velocity and entropy formation. Observations indicate that for values of \(0.5 \le Cs \le 3\), the friction factor increases at a rate of 0.04584044 (for the cylindrical shape) and 0.04583592 (for the brick shape). It has been observed that when the Eckert number (\({\text{Eck}}\)) increases, the temperature of the fluid becomes more intense. Additionally, for values of \(0 \le {\text{Eck}} \le 0.5\), the rate of heat transmission decreases by 0.291088899 for the cylindrical shape and 0.284062962 for the Brick shape. Furthermore, it has been observed that the Bejan number decreases when the couple stress parameter and Brinkman number increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

Abbreviations

\(\alpha_{1}\) :

Temperature difference parameter

\(\beta_{{\text{T}}}\) :

Thermal expansion coefficient

\(\beta_{{1{\text{T}}}}\) :

Nonlinear thermal expansion coefficient

\(\Gamma\) :

Inverse porosity parameter

\(\gamma_{0}\) :

Couple stress coefficient

\(\eta\) :

Similarity variable

\(\lambda\) :

Mixed convection parameter

\(\lambda_{1}\) :

Nonlinear convection parameter

\(\upsilon\) :

Kinematic viscosity

\(\rho\) :

Density

\(\sigma\) :

Electrical conductivity

\(\sigma *\) :

Stefan-Boltzmann constant

\(\tau_{{\text{w}}}\) :

Wall shear stress

\(\chi\) :

Porosity parameter

\({\text{Bi}}\) :

Biot number

\({\text{Br}}\) :

Brinkman number

\(Cs\) :

Couple stress parameter

\({\text{Eck}}\) :

Eckert number

\(h_{f}\) :

Convective heat transfer coefficient

\(k\) :

Thermal conductivity

\(k*\) :

Mean absorption coefficient

\({\text{Mg}}\) :

Magnetic field parameter

\(\Pr\) :

Prandtl number

\(q_{{\text{w}}}\) :

Wall heat flux

\({\text{Ra}}\) :

Thermal radiation parameter

\({\text{Re}}_{x}\) :

Reynolds number

\(S\) :

Unsteady parameter

\(s_{{\text{w}}}\) :

Wall mass flux

References

  1. Kaladhar, K., RamReddy, C., Srinivasacharya, D., Pradeepa, T.: Analytical study for Soret, Hall, and Joule heating effects on natural convection flow saturated porous medium in a vertical channel. Math. Sci. 10, 139–148 (2016)

    Article  MathSciNet  Google Scholar 

  2. Hayat, T., Imtiaz, M., Alsaedi, A.: Melting heat transfer in the MHD flow of Cu–water nanofluid with viscous dissipation and Joule heating. Adv. Powder Technol. 27(4), 1301–1308 (2016)

    Article  Google Scholar 

  3. Khan, U., Asadullah, M., Ahmed, N., Mohyud-Din, S.T.: Influence of Joule heating and viscous dissipation on MHD flow and heat transfer of viscous fluid in converging/diverging stretchable channels. J. Nanofluids 6(2), 254–263 (2017)

    Article  Google Scholar 

  4. Jing, D., Pan, Y., Wang, X.: Joule heating, viscous dissipation and convective heat transfer of pressure-driven flow in a microchannel with surface charge-dependent slip. Int. J. Heat Mass Transf. 108, 1305–1313 (2017)

    Article  Google Scholar 

  5. Kumar, R., Kumar, R., Shehzad, S.A., Sheikholeslami, M.: Rotating frame analysis of radiating and reacting ferro-nanofluid considering Joule heating and viscous dissipation. Int. J. Heat Mass Transf. 120, 540–551 (2018)

    Article  Google Scholar 

  6. Shahzad, F., Sagheer, M., Hussain, S.: Numerical simulation of magnetohydrodynamic Jeffrey nanofluid flow and heat transfer over a stretching sheet considering Joule heating and viscous dissipation. AIP Adv. 8(6), 065316 (2018)

    Article  Google Scholar 

  7. Ravindra, V., Chinige, S.K., Anupindi, K., Pattamatta, A.: Unsteady mixed convection past a circular cylinder using ghost fluid cascaded lattice Boltzmann method (GF-CLBM). Int. J. Adv. Eng. Sci. Appl. Math. 10, 281–290 (2018)

    Article  MathSciNet  Google Scholar 

  8. Pordanjani, A.H., Raisi, A., Ghasemi, B.: Numerical simulation of the magnetic field and Joule heating effects on force convection flow through parallel-plate microchannel in the presence of viscous dissipation effect. Numer. Heat Transf. Part A Appl. 76(6), 499–516 (2019)

    Article  Google Scholar 

  9. Shamshuddin, M.D., Mishra, S.R., Bég, O.A., Kadir, A.: Viscous dissipation and Joule heating effects in non-Fourier MHD squeezing flow, heat and mass transfer between Riga plates with thermal radiation: variational parameter method solutions. Arab. J. Sci. Eng. 44, 8053–8066 (2019)

    Article  Google Scholar 

  10. Mishra, A., Kumar, M.: Velocity and thermal slip effects on MHD nanofluid flow past a stretching cylinder with viscous dissipation and Joule heating. SN Appl. Sci. 2(8), 1350 (2020)

    Article  Google Scholar 

  11. Ahmed, F., Iqbal, M., Akbar, N.S.: Viscous dissipation and Joule heating effects on forced convection power law fluid flow through annular duct. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 235(21), 5858–5865 (2021)

    Article  Google Scholar 

  12. Zainal, N.A., Nazar, R., Naganthran, K., Pop, I.: Magnetic impact on the unsteady separated stagnation-point flow of hybrid nanofluid with viscous dissipation and Joule heating. Mathematics 10(13), 2356 (2022)

    Article  Google Scholar 

  13. Riaz, S., Naheed, N., Farooq, U., Lu, D., Hussain, M.: Non-similar investigation of magnetized boundary layer flow of nanofluid with the effects of Joule heating, viscous dissipation and heat source/sink. J. Magn. Magn. Mater. 574, 170707 (2023)

    Article  Google Scholar 

  14. Rana, A., Reza, M., Prasad, K.M., Shit, G.C.: Effects of different viscous dissipation and Joule heating on electromagnetohydrodynamic flow of power-law fluid in the porous microchannel. Int. J. Ambient Energy 44(1), 765–779 (2023)

    Article  Google Scholar 

  15. Sharma, K. R., Jain, S.: An unsteady MHD Williamson fluid flow in a vertical porous channel with porous media and thermal radiation. Int. J. Adv. Eng. Sci. Appl. Math. 1–12 (2024). https://doi.org/10.1007/s12572-024-00371-w

  16. Sahoo, R.R.: Thermo-hydraulic characteristics of radiator with various shape nanoparticle-based ternary hybrid nanofluid. Powder Technol. 370, 19–28 (2020)

    Article  Google Scholar 

  17. Abbasi, M., Heyhat, M.M., Rajabpour, A.: Study of the effects of particle shape and base fluid type on density of nanofluids using ternary mixture formula: a molecular dynamics simulation. J. Mol. Liq. 305, 112831 (2020)

    Article  Google Scholar 

  18. Sundar, L.S., Chandra Mouli, K.V., Said, Z., Sousa, A.C.: Heat transfer and second law analysis of ethylene glycol-based ternary hybrid nanofluid under laminar flow. J. Therm. Sci. Eng. Appl. 13(5), 051021 (2021)

    Article  Google Scholar 

  19. Alharbi, K.A.M., Ahmed, A.E.S., Ould Sidi, M., Ahammad, N.A., Mohamed, A., El-Shorbagy, M.A., Bilal, M., Marzouki, R.: Computational valuation of Darcy ternary-hybrid nanofluid flow across an extending cylinder with induction effects. Micromachines 13(4), 588 (2022)

    Article  Google Scholar 

  20. Cao, W., Animasaun, I.L., Yook, S.J., Oladipupo, V.A., Ji, X.: Simulation of the dynamics of colloidal mixture of water with various nanoparticles at different levels of partial slip: ternary-hybrid nanofluid. Int. Commun. Heat Mass Transfer 135, 106069 (2022)

    Article  Google Scholar 

  21. Animasaun, I.L., Yook, S.J., Muhammad, T., Mathew, A.: Dynamics of ternary-hybrid nanofluid subject to magnetic flux density and heat source or sink on a convectively heated surface. Surf. Interfaces 28, 101654 (2022)

    Article  Google Scholar 

  22. Madhukesh, J.K., Sarris, I.E., Prasannakumara, B.C., Abdulrahman, A.: Investigation of thermal performance of ternary hybrid nanofluid flow in a permeable inclined cylinder/plate. Energies 16(6), 2630 (2023)

    Article  Google Scholar 

  23. Mahmood, Z., Khan, U., Saleem, S., Rafique, K., Eldin, S.M.: Numerical analysis of ternary hybrid nanofluid flow over a stagnation region of stretching/shrinking curved surface with suction and lorentz force. J. Magn. Magn. Mater. 573, 170654 (2023)

    Article  Google Scholar 

  24. Mansour, M.A., Ahmed, S.E., Bakier, M.A.Y.: MHD natural convection around “plus” shape of circular barriers under local thermal non-equilibrium condition inside a wavy porous cavity saturated with Al2O3-Cu/water. Int. J. Adv. Eng. Sci. Appl. Math. 16(1), 87–104 (2024)

    Article  MathSciNet  Google Scholar 

  25. Sarkar, G.M., Sahoo, B.: Dual solutions of magnetohydrodynamic boundary layer flow and a linear temporal stability analysis. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 234(6), 553–561 (2020)

    Article  Google Scholar 

  26. Mortuja Sarkar, G., Sahoo, B.: Dual solutions of a magnetohydrodynamic stagnation point flow of a non-Newtonian fluid over a shrinking sheet and a linear temporal stability analysis. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 235(2), 527–535 (2021)

    Article  Google Scholar 

  27. Sarkar, G.M., Sahoo, B.: Unsteady flow with heat transfer over a shrinking surface and linear temporal stability analysis. Int. J. Comput. Methods Eng. Sci. Mech. 24(4), 247–257 (2023)

    Article  MathSciNet  Google Scholar 

  28. Srivastava, S., Ganesan, S.: A stabilized local projection finite element scheme for computations of oldroyd-B viscoelastic fluid flows. Int. J. Adv. Eng. Sci. Appl. Math. 13(4), 383–393 (2021)

    Article  MathSciNet  Google Scholar 

  29. Swain, S., Sarkar, G.M., Sahoo, B.: Dual solutions and linear temporal stability analysis of mixed convection flow of non-Newtonian special third grade fluid with thermal radiation. Int. J. Therm. Sci. 189, 108262 (2023)

    Article  Google Scholar 

  30. Swain, S., Sarkar, G.M., Sahoo, B.: Stability analysis of MHD stagnation point flow of Casson fluid past a shrinking sheet in porous medium considering heat sink or source, thermal radiation and suction effects. J. Comput. Sci. 75, 102207 (2024)

    Article  Google Scholar 

  31. Makinde, O.D.: Effects of viscous dissipation and Newtonian heating on boundary-layer flow of nanofluids over a flat plate. Int. J. Numer. Meth. Heat Fluid Flow 23(8), 1291–1303 (2013)

    Article  MathSciNet  Google Scholar 

  32. Sneha, K.N., Vanitha, G.P., Mahabaleshwar, U.S., Laroze, D.: Effect of couple stress and mass transpiration on ternary hybrid nanoliquid over a stretching/shrinking sheet with heat transfer. Micromachines 13(10), 1694 (2022)

    Article  Google Scholar 

  33. Al-Kouz, W., Mahanthesh, B., Alqarni, M.S., Thriveni, K.: A study of quadratic thermal radiation and quadratic convection on viscoelastic material flow with two different heat source modulations. Int. Commun. Heat Mass Transfer 126, 105364 (2021)

    Article  Google Scholar 

  34. Manjunatha, S., Puneeth, V., Gireesha, B.J., Chamkha, A.: Theoretical study of convective heat transfer in ternary nanofluid flowing past a stretching sheet. J. Appl. Comput. Mech. 8(4), 1279–1286 (2022)

    Google Scholar 

  35. Sheikholeslami, M., Rokni, H.B.: Magnetic nanofluid natural convection in the presence of thermal radiation considering variable viscosity. Eur. Phys. J. Plus 132, 1–12 (2017)

    Article  Google Scholar 

  36. Lavanya, B., Kumar, J.G., Babu, M.J., Raju, C.S., Shah, N.A., Junsawang, P.: Irreversibility analysis in the ethylene glycol based hybrid nanofluid flow amongst expanding/contracting walls when quadratic thermal radiation and arrhenius activation energy are significant. Mathematics 10(16), 2984 (2022)

    Article  Google Scholar 

  37. Waini, I., Ishak, A., Pop, I.: Hybrid nanofluid flow past a permeable moving thin needle. Mathematics 8(4), 612 (2020)

    Article  Google Scholar 

  38. Khademi, R., Razminia, A., Shiryaev, V.I.: Conjugate-mixed convection of nanofluid flow over an inclined flat plate in porous media. Appl. Math. Comput. 366, 124761 (2020)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sreenivasulu.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sreenivasulu, M., Vijaya, R.B. Unsteady flow of a ternary hybrid nanofluid over an inclined flat plate when Ohmic heating and quadratic thermal radiation are significant: couple stress model with shape factor analysis. Int J Adv Eng Sci Appl Math (2024). https://doi.org/10.1007/s12572-024-00374-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12572-024-00374-7

Keywords

Navigation