Skip to main content
Log in

The effect of chemical reaction on thermo-solutal magneto-convection under non-equilibrium temperature conditions

  • Published:
International Journal of Advances in Engineering Sciences and Applied Mathematics Aims and scope Submit manuscript

Abstract

The onset of convection in a porous medium saturated by the Oldroyd-type viscoelastic fluid, heated and salted from below, is investigated by incorporating the effects of chemical reactions on boundaries and externally imposed magnetic fields with non-equilibrium temperature conditions. The normal mode technique is used to perform linear stability analysis. The whole study is divided into two parts: (i) the parametric study for stability analysis in the oscillatory case and (ii) the stability analysis with the comparative study between different boundary conditions for controlling parameters for the limited case (in the stationary case, the viscoelastic effect is missing). These boundary surfaces are: (a) realistic bounding surfaces (i.e., rigid–free and free–rigid (R/R, R/F and F/R)) and (b) non-realistic bounding surface, i.e., free–free (F/F). For studying the viscoelastic fluid behavior, i.e., effect of the viscoelastic parameters (i.e., relaxation parameter \(({\lambda }_{1})\)) and retardation parameter \(({\lambda }_{2})\), we discussed the oscillatory state on free–free boundary surfaces. To analyze the consequences of different controlling parameters, numerical computation has been performed, and the results are illustrated in graphical form. For oscillatory convection, the minimum of the critical Rayleigh number drops as the relaxation parameter (\({\lambda }_{1})\), solute Rayleigh number (RaS) and Lewis number (Le) increase while it increases as the retardation parameter (\({\lambda }_{2})\), Chadrashekhar number (Q) and interphase heat transfer coefficient ( \(\tau )\) increase. In comparative study for stationary convection, the graphs demonstrate that while the critical Rayleigh number reduces as the value of Damk \(\ddot{o}\) hler number (\(\chi )\) grows, it increases along with increase in Chandrashekhar number (Q), interphase heat transfer coefficient (\(\tau )\) and Lewis number (Le).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

a :

Ve number [m1]

a c :

Critical wave number [m1]

d :

Height of the fluid layer [m]

g :

Acceleration due to gravity [m/s2]

\(\mathcal{H}\) :

Magnetic field

K 1 :

Inverse permeability

Le:

Lewis number

P :

Pressure [kg m1 s2]

Pm:

Magnetic Prandtl number

Q :

Chandrashekhar number

Ra:

Rayleigh number

RaS :

Solutal Rayleigh number

\(\mathfrak{e}\) :

Solute concentration

T f :

Temperature of fluid [kelvin]

T s :

Temperature of solid [kelvin]

t :

Time [s]

U :

Velocity [ms1]

Va:

Vadasz number

x, y, z :

Space coordinates

β T :

Coefficient of thermal expansion

β \(\mathfrak{e}\) :

Coefficient of solute expansion

\(\varepsilon\) :

Porosity

\({\eta }_{f}\) :

Fluid thermal conductivity ratio

\({\eta }_{s}\) :

Solid thermal conductivity ratio

\(\tau\) :

Dimensionless interphase heat transfer coefficient

\({\lambda }_{1}\) :

Relaxation time

\({\lambda }_{2}\) :

Retardation time

χ:

Damk \(\ddot{o}\) hler number

γ:

Ratio of heat capacities

κf :

Thermal diffusivity

κ\(\mathfrak{e}\) :

Solutal diffusivity

\(\mu\) :

Dynamic viscosity of the fluid

μ m :

Magnetic permeability

σ :

Growth rate

ρ :

Fluid density [kg m3]

Λ:

Magnetic viscosity

\(\xi\) :

Anisotropy ratio

References

  1. Kim, M.C., Lee, S.B., Kim, S., Chung, B.J.: Thermal instability of viscoelastic fluids in porous media. Int. J. Heat Mass Transf. 46, 5065–5072 (2003)

    Article  Google Scholar 

  2. Yoon, D., Kim, M.C., Choi, C.K.: The onset of oscillatory convection in a horizontal porous layer saturated with viscoelastic liquid. Transp. Porous Media 55, 275–284 (2004)

    Article  CAS  Google Scholar 

  3. Rudraiah, N., Kaloni, P.N., Radhadevi, P.V.: Oscillatory convection in a viscoelastic fluid through a porous layer heated from below. Rheol. Acta 28, 48–53 (1989)

    Article  CAS  Google Scholar 

  4. Kang, J., Fu, C., Tan, W.: Thermal convective instability of viscoelastic fluids in a rotating porous layer heated from below. J. Non Newtonian Fluid Mech. 166, 93–101 (2011)

    Article  CAS  Google Scholar 

  5. Wang, S., Tan, W.: The onset of Darcy–Brinkman thermosolutal convection in a horizontal porous media. Phys. Lett. 373(A). pp. 776–780 (2009).

  6. Malashetty, M.S., Biradar, B.S.: The onset of double diffusive reaction-convection in an anisotropic porous layer. Phys. Fluids 23, 064102–064112 (2011)

    Article  ADS  Google Scholar 

  7. Chamkha. A.J.: Unsteady MHD convective heat and mass transfer past a semi-infinite vertical permeable moving plate with heat absorption. Int. J. Eng. Sci. 42(2). pp. 217–230 (2004).

  8. Ahmed, S., Zueco, J., López-González, L.M.: Effects of chemical reaction, heat and mass transfer and viscous dissipation over a MHD flow in a vertical porous wall using perturbation method. Int. J. Heat and Mass Transfer. 104, 409–418 (2017)

    Article  CAS  Google Scholar 

  9. Rees, D.A.S., Pop, I.: Vertical free convection Boundary-layer flow in a porous medium using a thermal nonequilibrium model. J. Porous Media. 3(1), 31–44 (2000)

    Article  Google Scholar 

  10. Banu, N., Rees, D.A.S.: Onset of Darcy-Bernard convection using a thermal non- equilibrium model. Int. J. Heat and Mass Transf. 45, 2221–2228 (2002)

    Article  Google Scholar 

  11. Gandomkar, A., Gray, K.E.: Local thermal non-equilibrium in porous media with heat conduction. Int. J. Heat Mass Transf. 124, 1212–1216 (2018)

    Article  Google Scholar 

  12. Malashetty, M.S., Shivkumara, I.S.: The onset of convection in a couple stress fluid saturated porous layer using a thermal non-equilibrium model. Phys. Lett. A 373, 781–790 (2009)

    Article  ADS  CAS  Google Scholar 

  13. Nield, D.A., Bejan, A.: Convection in porous media, 5th edn. Springer-Verlag, New York (2017)

    Book  Google Scholar 

  14. Dash, G.C., Rath, P.K., Patra, A.K.: Unsteady free convective MHD flow through porous media in a rotating system with fluctuating temperature and concentration. Modell. Controll. B 78(3), 1–16 (2009)

    Google Scholar 

  15. Kumar, B.R., Sivaraj, R., Benazir, A.J.: Chemically reacting MHD free convective flow over a vertical cone with a variable electric conductivity. Int. J. Pure Appl. Math. 101, 821–828 (2015)

    Google Scholar 

  16. Jenifer, A.S., Ponnaiah, S., Natarajan, E.: Unsteady magnetohydrodynamic mixed convection flow over a rotating sphere with sinusoidal mass transfer. J. Heat Mass Transf. Res. 9, 129–140 (2022)

    Google Scholar 

  17. Wang, P., Qu, Y., Meng, X., Tu, J ., Zheng, W., Lin Hu, L., Chen, Q.: A strong magnetic field alters the activity and selectivity of the CO2RR by restraining C–C coupling. Magnetochemistry 9, 65 (2023). https://doi.org/10.3390/magnetochemistry9030065

  18. Bejawada, S.G., Reddy, Y.D., Jamshed, W., Nisar, K.S., Alharbi, A.N., Chouikh, R.: Radiation effect on MHD Casson fluid flow over an inclined non-linear surface with chemical reaction in a Forchheimer porous medium. Alex. Eng. J. 6, 8207–8220 (2022)

    Article  Google Scholar 

  19. Finlayson, B.A.: The Method of Weighted Residuals and Variational Principals. Academic Press, London (2006)

    Google Scholar 

  20. Horton, C.W., Rogers, F.T.: Convection currents in a porous medium. J. Appl. Phys. 16, 367–370 (1945)

    Article  ADS  MathSciNet  Google Scholar 

  21. Lapwood, E.R.: Convection of a fluid in a porous medium. Math. Proc. Cambridge. 44, 508–521 (1948)

    Article  ADS  MathSciNet  Google Scholar 

  22. Pritchard, D., Richardson, C.N.: The effect of temperature-dependent solubility on the onset of thermosolutal convection in a horizontal porous layer. J. Fluid Mech. 571, 59–95 (2007)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  23. Bharty, M., Srivastava, A.K., Mahato, H.: Stability of Magneto Double Diffusive Convection in Couple Stress Liquid with Chemical Reaction. J. Heat Mass Transf. Res. 10(2), 171–190 (2023). https://doi.org/10.22075/jhmtr.2023.30246.1432

    Article  Google Scholar 

Download references

Acknowledgements

Author Monal Bharty greatly acknowledges the financial assistance from Central University of Jharkhand as a research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Srivastava.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix-I

Appendix-I

$${p}_{1}=\alpha \gamma {\tau }^{2}, {p}_{2}={\alpha }^{2}, {p}_{3}={\left({{\delta }_{4}}^{2}+\gamma \tau \right)}^{2},{p}_{4}=Q{P}_{m}{{\delta }_{1}}^{4}{\pi }^{2},{p}_{5}={\left({P}_{m}{{\delta }_{1}}^{2}\right)}^{2},{p}_{6}=\frac{1}{{\varepsilon }^{2}}, {p}_{7}={{\delta }_{2}}^{2},{p}_{8}={\lambda }_{1}{\lambda }_{2}{{\delta }_{2}}^{2}, {p}_{9}={{\lambda }_{1}}^{2},{p}_{10}=\frac{{{\delta }_{1}}^{2}}{Va}, {p}_{11}=\frac{Q{P}_{m}{{\delta }_{1}}^{2}{\pi }^{2}}{\varepsilon }, {p}_{12}=\left({\lambda }_{2}-{\lambda }_{1}\right){{\delta }_{2}}^{2},{p}_{13}=\frac{{{\delta }_{3}}^{2}+\tau }{{a}^{2}}, {p}_{14}=\frac{\gamma {\tau }^{2}\left({{\delta }_{4}}^{2}+\gamma \tau \right)}{{a}^{2}},$$
$$\begin{aligned} p_{{15}} = & Ra_{S} ,p_{{16 = }} \left( {\delta _{5} ^{2} + \chi } \right)^{2} , \\ p_{{17}} = & \chi + \delta _{3} ^{2} + \tau ,p_{{18}} = Ra_{S} \left( {\delta _{5} ^{2} + \chi } \right), \\ m_{1} = & p_{6} p_{8} \left( {p_{1} + p_{3} } \right),m_{2} = p_{2} p_{6} p_{8} , \\ m_{3} = & \left( {p_{4} p_{9} + p_{6} p_{7} + p_{5} p_{8} + p_{6} p_{8} p_{{18}} - p_{9} p_{6} p_{{18}} } \right)\left( {p_{1} + p_{3} } \right), \\ m_{4} = & p_{2} \left( {p_{4} p_{9} + p_{6} p_{7} + p_{5} p_{8} + p_{6} p_{8} p_{{16}} - p_{6} p_{9} p_{{18}} } \right), \\ m_{5} = & \left( {p_{1} + p_{3} } \right)\left( {p_{4} p_{9} p_{{16}} + p_{4} p_{{16}} + p_{5} p_{7} + p_{6} p_{7} p_{{16}} + p_{5} p_{8} p_{{16}} - p_{5} p_{9} p_{{18}} - p_{6} p_{{18}} } \right), \\ m_{6} = & p_{2} \left( {p_{4} p_{9} p_{{16}} + p_{4} p_{{16}} + p_{5} p_{7} + p_{6} p_{7} p_{{16}} + p_{5} p_{8} p_{{16}} - p_{5} p_{9} p_{{18}} - p_{6} p_{{18}} } \right), \\ m_{7} = & \left( {p_{1} + p_{3} } \right)\left( {p_{5} p_{7} p_{{16}} - p_{5} p_{{16}} } \right),m_{8} = p_{2} \left( {p_{5} p_{7} p_{{16}} - p_{5} p_{{16}} } \right), \\ m_{9} = & p_{2} p_{{13}} p_{6} p_{9} p_{{10}} ,m_{{10}} = \left( {p_{3} p_{{13}} - p_{{14}} } \right)p_{6} p_{9} p_{{10}} , \\ m_{{11}} = & p_{2} p_{{13}} \left( {p_{5} p_{9} p_{{10}} + p_{6} p_{{10}} - p_{9} p_{{11}} + p_{6} p_{{12}} } \right), \\ m_{{12}} = & \left( {p_{3} p_{{13}} - p_{{14}} } \right)\left( {p_{5} p_{9} p_{{10}} + p_{6} p_{{10}} - p_{9} p_{{11}} + p_{6} p_{{12}} } \right), \\ m_{{13}} = & p_{2} p_{{13}} \left( {p_{5} p_{{10}} - p_{{11}} + p_{5} p_{{12}} } \right), \\ m_{{14}} = & \left( {p_{3} p_{{13}} - p_{{14}} } \right)\left( {p_{5} p_{{10}} - p_{{11}} + p_{5} p_{{12}} } \right), \\ m_{{15}} = & p_{2} p_{{15}} p_{{17}} ,m_{{16}} = p_{3} p_{{15}} p_{{17}} - p_{{14}} p_{{15}} a^{2} . \\ \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bharty, M., Srivastava, A.K. & Mahato, H. The effect of chemical reaction on thermo-solutal magneto-convection under non-equilibrium temperature conditions. Int J Adv Eng Sci Appl Math (2024). https://doi.org/10.1007/s12572-024-00368-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12572-024-00368-5

Keywords

Navigation