Skip to main content

Advertisement

Log in

Principal component analysis and deep neural networks in modeling the melt flow index of degradable plastics

  • Published:
International Journal of Advances in Engineering Sciences and Applied Mathematics Aims and scope Submit manuscript

Abstract

Melt flow index (MFI) is one of the physical properties of degradable plastics that must be considered in the production of well-degradable plastics. This is because MFI affects some of the mechanical properties of degradable plastics. This study aims to model the MFI of degradable plastics using two nonparametric methods, namely principal component analysis (PCA) and deep neural networks (DNN). PCA was used to reduce the dimension of the input data set in the first stage of modeling. Then, the DNN was used as an alternative model to estimate the accuracy of predicting the MFI of degradable plastics. The result shows that the model accuracy is very good, with a least mean squared error of 0.00004 and a mean absolute percentage error of 2.46% using 4 principal components. The study also highlights the advantages of combining PCA and DNN in modeling MFI for degradable plastics and provides some ideas for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jia, H., Wang, Z., Zhang, J., Li, W., Ren, Z., Jia, Z., Wang, Q.: Effects of biodegradable mulch on soil water and heat conditions, yield and quality of processing tomatoes by drip irrigation. J. Arid Land 12, 819–836 (2020)

    Article  Google Scholar 

  2. Combrzynski, M., Oniszczuk, T., Kupryaniuk, K., Wójtowicz, A., Mitrus, M., Milanowski, M., Soja, J., Budziak-Wieczorek, I., Karcz, D., Kaminski, D., Kulesza, S., Wojtunik-Kulesza, K., Kasprzak-Drozd, K., Gancarz, M., Kowalska, I., Slusarczyk, L., Matwijczuk, A.: Physical properties, spectroscopic, microscopic, x-ray, and chemometric analysis of starch films enriched with selected functional additives. Materials 14(10), 2673 (2021)

    Article  Google Scholar 

  3. Sood, M., Dwivedi, G.: Effect of fiber treatment on flexural properties of natural fiber reinforced composites: a review. Egypt. J. Pet. 7(4), 775–783 (2017)

    Google Scholar 

  4. Li, M., Pu, Y., Thomas, V.M., Yoo, C.G., Soydanozcan, D., Deng, Y., Nelson, K., Ragauskas, A.J.: Recent advancements of plant-based natural fiber–reinforced composites and their applications. Compos. Part B 200, 108254 (2020)

    Article  Google Scholar 

  5. Kaniapan, S., Hassan, S., Ya, H., Nesan, K.P., Azeem, M.: The utilisation of palm oil and oil palm residues and the related challenges as a sustainable alternative in biofuel, bioenergy, and transportation sector: a review. Sustainability 13(6), 3110 (2021)

    Article  Google Scholar 

  6. Alfei, S., Schito, A.M., Zuccari, G.: Biodegradable and compostable shopping bags under investigation by FTIR spectroscopy. Appl. Sci. 11(2), 621 (2021)

    Article  Google Scholar 

  7. Vallittu, P.K.: An overview of development and status of fiber-reinforced composites as dental and medical biomaterials. Acta Biomater. Odontol. Scand. 4(1), 44–55 (2018)

    Article  Google Scholar 

  8. Parikh, H.H., Gohil, P.P.: Experimental determination of tribo behavior of fiber-reinforced composites and its prediction with artificial neural networks. In: Jawaid, M., Thariq, M., Saba, N. (eds.) Woodhead Publishing Series in Composites Science and Engineering, pp. 301–320. Woodhead Publishing, London (2019)

    Google Scholar 

  9. Khan, B., Niazi, M.B.K., Samin, G., Jahan, Z.: Thermoplastic starch: a possible biodegradable food packaging material—a review. J. Food Process Eng. 40(3), e12447 (2017)

    Article  Google Scholar 

  10. Zuhri, M.Y.M., Sapuan, S.M., Ismail, N.: Oil palm fibre reinforced polymer composites: a review. Prog. Rubber Plast. Recycl. Technol. 25(4), 233–246 (2009)

    Article  Google Scholar 

  11. Tokiwa, Y., Calabia, B.P., Ugwu, C.U., Aiba, S.: Biodegradability of plastics. J. Mol. Sci. 10(9), 3722–3742 (2009)

    Article  Google Scholar 

  12. Baimark, Y., Rungseesantivanon, W., Prakymoramas, N.: Improvement in melt flow property and flexibility of poly (L-lactide)-b-poly (ethylene glycol)-b-poly (L-lactide) by chain extension reaction for potential use as flexible bioplastics. Mater. Des. 154, 73–80 (2018)

    Article  Google Scholar 

  13. Sanyang, M.L., Sapuan, S.M., Jawaid, M., Ishak, M.R., Sahari, J.: Effect of plasticizer type and concentration on physical properties of biodegradable films based on sugar palm (Arenga pinnata) starch for food packaging. J. Food Sci. Technol. 53, 326–336 (2016)

    Article  Google Scholar 

  14. Ovat, F.A.: Environmental degradability of Nigerian long bamboo fibre-reinforced polymer composite (NLBFRPC). Eur. J. Eng. Technol. Res. 2(6), 48–53 (2017)

    Google Scholar 

  15. Masnar, A., Coorey, R.: Application of sago pith waste and nanosilica from rice husk ash as hybrid bio-nanofiller composite for food plastic packaging. Ukr. Food J. 6(4), 599–759 (2017)

    Article  Google Scholar 

  16. Paliwal, M., Kumar, U.A.: Neural networks and statistical techniques: a review of applications. Expert Syst. Appl. 36(1), 2–17 (2009)

    Article  Google Scholar 

  17. Sun, Y., Hanhan, I., Sangid, M. D. & Lin, G.: Predicting mechanical properties from microstructure images in fiber-reinforced polymers using convolutional neural networks. ArXiv preprint arXiv 2010.03675 (2020)

  18. Liu, X., Tian, S., Tao, F., Yu, W.: A review of artificial neural networks in the constitutive modelling of composite materials. Compos. Part B: Eng. 224, 109152 (2021)

    Article  Google Scholar 

  19. Kazi, M.-K., Eljack, F., Mahdi, E.: Optimal filler content for cotton fiber/PP composite based on mechanical properties using artificial neural network. Compos. Struct. 251, 112654 (2020)

    Article  Google Scholar 

  20. Ramkumar, G., Sahoo, S., Anitha, G., Ramesh, S., Nirmala, P., Tamilselvi, M., Subbiah, R., Rajkumar, S.: An unconventional approach for analyzing the mechanical properties of natural fiber composite using convolutional neural network. Adv. Mater. Sci. Eng. 2021, 1–15 (2021)

    Article  Google Scholar 

  21. Allegri, G.: Modelling fatigue delamination growth in fibre-reinforced composites: power-law equations or artificial neural networks? Mater. Des. 155, 59–70 (2018)

    Article  Google Scholar 

  22. Carvalho, M.S.D., Azevedo, J.B., Barbosa, J.D.V.: Effect of the melt flow index of an HDPE matrix on the properties of composites with wood particles. Polym. Test. 90, 106678 (2020)

    Article  Google Scholar 

  23. Boparai, K.S., Singh, R., Fabbrocino, F., Fraternali, F.: Thermal characterization of recycled polymer for additive manufacturing applications. Compos. Part B: Eng. 106, 42–47 (2016)

    Article  Google Scholar 

  24. Singh, R., Fraternali, F., Farina, I. & Hashmi, M. S.: Experimental investigations for development of hybrid feed stock filament of fused deposition modelling. Module in Materials Science and Materials Engineering, Elsevier (2018). https://doi.org/10.1016/B978-0-12-803581-8.10392-3

  25. Balasuriya, P.W., Ye, L., Mai, Y.W.: Mechanical properties of wood flake–polyethylene composites. Part I: effects of processing methods and matrix melt flow behaviour. Compos. Part A: Appl. Sci. Manuf. 32(5), 619–629 (2001)

    Article  Google Scholar 

  26. Guerreiro, S.D.C., João, I.M., Real, L.E.P.: Evaluation of the influence of testing parameters on the melt flow index of thermoplastics. Polym. Test. 31(8), 1026–1030 (2012)

    Article  Google Scholar 

  27. Kucuk, F., Sismanoglu, S., Kanbur, Y., Tayfun, U.: Optimization of mechanical, thermo-mechanical, melt-flow and thermal performance of TPU green composites by diatomaceous earth content. Clean. Eng. Technol. 4, 100251 (2021)

    Article  Google Scholar 

  28. Fotouhi, S., Pashmforoush, F., Bodaghi, M., Fotouhi, M.: Autonomous damage recognition in visual inspection of laminated composite structures using deep learning. Compos. Struct. 268, 113960 (2021)

    Article  Google Scholar 

  29. Yang, Z., Yu, C.-H., Buehler, M.J.: Deep learning model to predict complex stress and strain fields in hierarchical composites. Sci. Adv. 7(15), eabd7416 (2021)

    Article  Google Scholar 

  30. Marani, R., Palumbob, D., Galiettib, U., D’orazioa, T.: Deep learning for defect characterization in composite laminates inspected by step-heating thermography. Opt. Lasers Eng. 145, 106679 (2021)

    Article  Google Scholar 

  31. Zhang, X.-C., Gong, J.-G., Xuan, F.-Z.: A deep learning based life prediction method for components under creep, fatigue and creep-fatigue conditions. Int. J. Fatigue 148, 106236 (2021)

    Article  Google Scholar 

  32. Azman, B. M., Hussain, S. I., Azmi, N. A., Athir, M. Z., Ghani, A. & Norlen, N. I. D.: Prediction of distant recurrence in breast cancer using a deep neural network. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 38(1) (2021)

  33. Alkhayrat, M., Aljnidi, M., Aljoumaa, K.: A comparative dimensionality reduction study in telecom customer segmentation using deep learning and PCA. J. Big Data 7, 1–23 (2020)

    Article  Google Scholar 

  34. Pandey, P., Chakraborty, A. & Nandi, G. C.: Efficient neural network based principal component analysis algorithm. In: Conference on Information and Communication Technology (CICT), pp. 1–55 (2018)

  35. Markowicz, F., Szymańska-Pulikowska, A.: Analysis of the possibility of environmental pollution by composted biodegradable and oxo-biodegradable plastics. Geosciences 9(11), 460 (2019)

    Article  Google Scholar 

  36. Popescu, G., Radulov, I., Iordănescu, O.A., Orboi, M.D., Rădulescu, L., Drugă, M., Bujancă, G.S., David, I., Hădărugă, D.I., Banciu, C.A.L., Hădărugă, N.G., Riviş, S.M.: Karl fischer water titration—principal component analysis approach on bread products. Appl. Sci. 10(18), 6518 (2020)

    Article  Google Scholar 

  37. Uddin, M.I., Zada, N., Aziz, F., Saeed, Y., Zeb, A., Shah, S.A.A., Al-Khasawneh, M.A., Mahmoud, M.: Prediction of future terrorist activities using deep neural networks. Complexity (2020). https://doi.org/10.1155/2020/1373087

    Article  Google Scholar 

  38. Kejie, Xu., Wen, Y., Xu, X.: Melt flow ratio: a way to identify the type of polyethylene. Adv. Ind. Eng. Polym. Res. 6(1), 79–82 (2023)

    Google Scholar 

Download references

Acknowledgements

The authors thank Wan Hasamudin Wan Hasan of the Malaysian Palm Oil Board for providing data on the physical properties of degradable plastics. This research was also supported by the Ministry of Higher Education (MoHE) through the Fundamental Research Grant Scheme (FRGS/1/2019/STG06/UNIKL/02/3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syamsiah Abu Bakar.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakar, S.A., Hussain, S.I., Zirour, M. et al. Principal component analysis and deep neural networks in modeling the melt flow index of degradable plastics. Int J Adv Eng Sci Appl Math (2023). https://doi.org/10.1007/s12572-023-00352-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12572-023-00352-5

Keywords

Navigation