Skip to main content
Log in

Arbitrarily-shaped layered polar orthotropic domains: elastostatics using analytical and coupled analytical-FE approaches

  • Published:
International Journal of Advances in Engineering Sciences and Applied Mathematics Aims and scope Submit manuscript

Abstract

Polar orthotropic materials as wood and filament-wound composites are ubiquitous in nature and technological applications, respectively. With annular domains rendering themselves naturally for polar orthotropy, applications featuring annular domains have received considerable attention; however, arbitrarily-shaped domains are less explored. In an attempt to address this gap, the present work explores elastostatics of arbitrarily-shaped layered 2D domains. After identifying the refinement required in an earlier work to yield a physically and mathematically consistent solution, the work considers analytically homogenous and layered polar orthotropic annular domains and corroborates the results with FEA. Subsequently, the arbitrarily-shaped layered domains—including octagonal-shaped, cruciform-shaped and annular domains—are analyzed by employing a coupled FE-analytical technique combining coarse-mesh boundary displacement-data from FEA and the refined solution. Results for the illustrative cases under symmetric and anti-symmetric loadings are depicted as contours over the domains for the resultant displacements and von Mises stresses. A comparison with converged FE results and \(L^{2}\)-error norms indicate a good correspondence between the two—demonstrating the efficacy of the coupled technique. The potential extension of the technique to hybrid-experimental strategies, asymmetric cases, composite cylindrical FGMs and a complex-variable based formulation for the coupled technique is briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Availability of data and materials

Not available.

Code availability

Not uploaded.

Abbreviations

\(\psi\) :

Airy stress function

\(r, \theta\) :

Polar coordinate

\({\sigma _{rr}}, {\sigma _{\theta \theta }}, {\tau _{r\theta }}\) :

Stress components in polar coordinate

\({u_{rr}}, {u_{\theta \theta } }\) :

Displacement components in polar coordinate

\({{{U}}_{{\textrm{FEM}}}},{{{U}}_{{\textrm{HM}}}}\) :

Resultant displacements from FEM and HM, respectively

\(E_r\),\(E_\theta\) :

Young’s moduli

\(\nu _{r\theta }\),\(\nu _{\theta r}\) :

Poisson’s ratios

\(G_{r\theta }\) :

Rigidity modulus

\({\sigma _0}\left( \theta \right)\) :

Uniformly distributed radial pressure over an angle \(\theta\)

P :

Uniformly applied pressure

\(\beta\) :

Half-angle of a patch-load

\(\textrm{AM}\) :

Analytical method

\(\textrm{ASF}\) :

Airy stress function

\(\textrm{BCs}\) :

Boundary conditions

\(\textrm{BVP}\) :

Boundary value problem

\(\textrm{DIC}\) :

Digital image correlation

\(\textrm{FEM}\) :

Finite element method

\(\textrm{FGM}\) :

Functionally graded material

\(\textrm{HM}\) :

Hybrid method

\(\textrm{TSA}\) :

Thermoelastic stress analysis

References

  1. Lekhnitskii, S.G.: Theory of Elasticity of an Anisotropic Body. MIR Publishers, Moscow (1981)

    Google Scholar 

  2. Carrier, G.F.: Stress distributions in cylindrically aeolotropic plates. J. Appl. Mech. 10(3), A117–A122 (1943)

    Article  Google Scholar 

  3. Herrmann, L.R.: Stress functions for the axisymmetric, orthotropic, elasticity equations. AIAA J. 2(10), 1822–1824 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  4. Shaffer, B.W.: Generalized plane strain of pressurized orthotropic tubes. J. Eng. Ind. 87(3), 337–343 (1965)

    Article  CAS  Google Scholar 

  5. Tauchert, T.R., Hsu, N.N.: Shrinkage stresses in wood logs considered as layered, cylindrically orthotropic materials. Wood Sci. Technol. 11(1), 51–58 (1977)

    Article  Google Scholar 

  6. Gal, D., Dvorkin, J.: Stresses in anisotropic cylinders. Mech. Res. Commun. 22(2), 109–113 (1995)

    Article  Google Scholar 

  7. Horgan, C.O., Baxter, S.C.: Effects of curvilinear anisotropy on radially symmetric stresses in anisotropic linearly elastic solids. J. Elast. 42(1), 31–48 (1996)

    Article  Google Scholar 

  8. Tutuncu, N.: Plane stress analysis of end-loaded orthotropic curved beams of constant thickness with applications to full rings. J. Mech. Des. 120(2), 368–374 (1998)

    Article  Google Scholar 

  9. Tervonen, M., Pramila, A.: Stresses in a hollow rotating cylindrically orthotropic tube. Mech. Compos. Mater. 32(6), 577–581 (1996)

    Article  ADS  Google Scholar 

  10. Ari-Gur, J., Stavsky, Y.: On rotating polar-orthotropic circular disks. Int. J. Solids Struct. 17(1), 57–67 (1981)

    Article  Google Scholar 

  11. Jain, R., Ramachandra, K., Simha, K.R.Y.: Singularity in rotating orthotropic discs and shells. Int. J. Solids Struct. 37(14), 2035–2058 (2000)

    Article  Google Scholar 

  12. Tahani, M., Nosier, A., Zebarjad, S.M.: Deformation and stress analysis of circumferentially fiber-reinforced composite disks. Int. J. Solids Struct. 42(9–10), 2741–2754 (2005)

    Article  Google Scholar 

  13. Sinha, P.K., Dhoopar, B.L.: Characterisation of mechanical properties of cylindrically orthotropic thin composite sheets. Fibre Sci. Technol. 13(4), 269–280 (1980)

    Article  Google Scholar 

  14. McKenzie, D.O., Webber, J.P.H.: Hole reinforcement in isotropic and orthotropic plates using filament-wound discs. Aeronaut. Q. 26(4), 254–274 (1975)

    Article  Google Scholar 

  15. Hoff, N.J.: Stress concentrations in cylindrically orthotropic composite plates with a circular hole. J. Appl. Mech. 48(3), 563–569 (1981)

    Article  ADS  Google Scholar 

  16. Pelekh, B.L., Makhnitskii, R.N.: Approximate methods for solving problems of stress concentration near the aperture in orthotropic plates made of composite materials. Mech. Compos. Mater. 16(4), 447–450 (1981)

    Article  ADS  Google Scholar 

  17. Pagano, N.J.: The stress field in a cylindrically anisotropic body under two-dimensional surface tractions. J. Appl. Mech. 39(3), 791–796 (1972)

    Article  ADS  Google Scholar 

  18. Timoshenko, S.P., Goodier, J.N.: Theory of Elasticity, 3rd edn. McGraw-Hill, New York (1970)

    Google Scholar 

  19. Sinha, P.K., Dhoopar, B.L.: Plane stress analysis of a cylindrically orthotropic ring under diametral compression. Compos. Struct. 5(1), 51–59 (1986)

    Article  Google Scholar 

  20. Dhoopar, B.L., Sinha, P.K.: Plane stress analysis of cylindrically orthotropic composites. Part 2. A cylindrically reinforced disc under diametral compression. Fibre Sci. Technol. 19(3), 195–213 (1983)

    Article  Google Scholar 

  21. Pavlović, M.N., Tahan, N., Kotsovos, M.D.: Orthotropic curved plates: symbolic solution for in-plane actions and examples of collinear compression. J. Strain Anal. Eng. Des. 42(3), 137–154 (2007)

    Article  Google Scholar 

  22. Soutas-Little, R.W.: Elasticity. Courier Corporation, North Chelmsford (2012)

    Google Scholar 

  23. Thube, Y.S., Lohit, S.K., Gotkhindi, T.P.: A coupled analytical-FE hybrid approach for elastostatics. Meccanica 55(11), 2235–2262 (2020)

    Article  MathSciNet  Google Scholar 

  24. Yiannopoulos, A.C.: A simplified solution for stresses in thick-wall cylinders for various loading conditions. Comput. Struct. 60(4), 571–578 (1996)

    Article  Google Scholar 

  25. Lin, S.J., Samad, W.A., Khaja, A.A., Rowlands, R.E.: Hybrid thermoelastic stress analysis. Exp. Mech. 55(4), 653–665 (2015)

    Article  Google Scholar 

  26. Khaja, A.A., Samad, W.A.: Hybrid digital image correlation. J. Eng. Mech. 146(4), 04020009 (2020)

    Google Scholar 

  27. Spillers, W.R.: A cylindrically orthotropic elastic thick ring. AIAA J. 6(6), 1195–1197 (1968)

    Article  ADS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

YST: Conceptualization; Writing—original draft; Formal analysis. TPG: Conceptualization; Formal analysis; Writing—review and editing; Supervision.

Corresponding author

Correspondence to Tejas P. Gotkhindi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

All authors have agreed.

Consent for publication

All authors have agreed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thube, Y.S., Gotkhindi, T.P. Arbitrarily-shaped layered polar orthotropic domains: elastostatics using analytical and coupled analytical-FE approaches. Int J Adv Eng Sci Appl Math 16, 1–24 (2024). https://doi.org/10.1007/s12572-023-00330-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-023-00330-x

Keywords

Navigation