Advertisement

Control words of string rewriting P systems

  • Atulya K. Nagar
  • Ajeesh Ramanujan
  • K. G. SubramanianEmail author
Article
  • 143 Downloads

Abstract

P systems with controlled computations have been introduced and investigated in the recent past, by assigning labels to the rules in the regions of the P system and guiding the computations by control words. Here we consider string rewriting cell-like transition P system with label assigned rules working in acceptor mode and compare the obtained family of languages of control words over the rule labels with certain well-known language families. An application to chain code picture generation is also pointed out.

Keywords

Membrane computing Cell-like transition P system Control words Languages 

Notes

Acknowledgements

The authors thank the reviewers for their very useful comments which helped in improving the presentation

References

  1. 1.
    Pǎun, Gh: Computing with membranes. J. Comput. Syst. Sci. 61, 108–143 (2000)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Păun, Gh: Membrane Computing: An Introduction. Springer, Berlin, Heidelbrg (2000)zbMATHGoogle Scholar
  3. 3.
    Păun, Gh, Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Computing. Oxford University Press Inc, New York (2010)CrossRefGoogle Scholar
  4. 4.
    Zhang, G., Pan, L.: A survey of membrane computing as a new branch of natural computing. Chin. J. Comput. 33(2), 208–214 (2010)CrossRefGoogle Scholar
  5. 5.
    Pǎun, Gh, Pérez Jiménez, M.J.: Languages and P systems: recent developments. Comput. Sci. J. Maldova 20, 112–132 (2012)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Krithivasan, K., Păun, Gh, Ramanujan, A.: On controlled P systems. Fundam. Inf. 131(3–4), 451–464 (2014)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Chen, H., Freund, R., Ionescu, M., Păun, G., Pérez-Jiménez, M.J.: On string languages generated by spiking neural P systems. Fundam. Inf. 75(1–4), 141–162 (2007)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Ramanujan, A., Krithivasan, K.: Control languages associated with spiking neural P systems. Rom. J. Inf. Sci. Technol. 15(4), 301–318 (2012)Google Scholar
  9. 9.
    Martín-Vide, C., Păun, Gh, Pazos, J., Rodrguez Patón, A.: Tissue P systems. Theor. Comput. Sci. 296(2), 295–326 (2003)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ramanujan, A., Krithivasan, K.: Control languages associated with tissue P systems. In: Proceedings of Twelfth International Conference on Unconventional Computation and Natural Computation 2013. Lecture Notes in Computer Science, vol. 7956, pp. 186–197 (2013)CrossRefGoogle Scholar
  11. 11.
    Ramanujan, A.: Control languages in P systems. Ph.D Thesis, Indian Institute of Technology Madras (2014)Google Scholar
  12. 12.
    Besozzi, D., Mauri, G., Zandron, C.: Hierarchies of parallel rewriting P systems—a survey. New Gener. Comput. 22(4), 331–347 (2004)CrossRefGoogle Scholar
  13. 13.
    Besozzi, D., Ferretti, C., Mauri, G., Zandron, C.: Parallel rewriting P systems with deadlock. Lect. Notes Comput. Sci. 2568, 302–314 (2003)CrossRefGoogle Scholar
  14. 14.
    Bottoni, P., Labella, A., Martin-Vide, C., Păun, Gh: Rewriting P systems with conditional communication. Lect. Notes Comput. Sci. 2300, 325–353 (2002)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Ferretti, C., Mauri, G., Păun, Gh, Zandron, C.: On three variants of rewriting P systems. Theor. Comput. Sci. 301, 201–215 (2003)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 1–3. Springer, Berlin (1997)zbMATHGoogle Scholar
  17. 17.
    Sureshkumar, W., Rama, R.: Regulating a distributed computing model via Chomsky hierarchy. GSTF J. Math. Stat. Oper. Res. 3(1), 21–29 (2015)Google Scholar
  18. 18.
    Ibarra, O.H.: Simple matrix languages. Inf. Control 17, 359–394 (1970)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Fernau, H.: Even linear simple matrix languages: formal language properties and grammatical inference. Theor. Comput. Sci. 289, 425–456 (2002)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Rosebrugh, R.D., Wood, D.: Image theorems for simple matrix languages and \(n\)-parallel languages. Math. Syst. Theor. 8(2), 150–155 (1975)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Maurer, H.A., Rozenberg, G., Welzl, E.: Using string languages to describe picture languages. Inf. Control 54, 155–185 (1982)MathSciNetCrossRefGoogle Scholar

Copyright information

© Indian Institute of Technology Madras 2018

Authors and Affiliations

  • Atulya K. Nagar
    • 1
  • Ajeesh Ramanujan
    • 2
  • K. G. Subramanian
    • 1
    Email author
  1. 1.Department of Mathematics and Computer Science, Faculty of ScienceLiverpool Hope UniversityLiverpoolUK
  2. 2.Department of Computer Science and EngineeringCollege of EngineeringThiruvananthapuramIndia

Personalised recommendations