Skip to main content

Heat and momentum transfer of turbulent stripe in transitional-regime plane Couette flow

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


Direct numerical simulations using a spectral method of plane Couette flow were performed to clarify the dissimilarity between heat and momentum transport for a turbulent stripe, which is a large-scale intermittent flow structure in a subcritical transitional regime. We compared between the turbulent-stripe regime and a uniform-turbulence regime in terms of variations of turbulent statistics. A dissimilarity between the turbulent heat flux and the Reynolds shear stress was identified in the case of uniform turbulence, while less deviation appeared in the case of the turbulent stripe. The present results imply that more efficient heat transfer relative to the momentum transfer can be expected for the turbulent stripe in comparison to the uniform turbulence.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Reynolds, O.: On the extent and action of the heating surface of steam boilers. Papers on Mechanical and Physical subjects. p. 81 (1901)

  2. 2.

    Chilton, T.H., Colburn, A.P.: Mass transfer (absorption) coefficients prediction from data on heat transfer and fluid friction. Ind. Eng. Chem. 26(11), 1183–1187 (1934)

    Article  Google Scholar 

  3. 3.

    Hasegawa, Y., Kasagi, N.: Dissimilar control of momentum and heat transfer in a fully developed turbulent channel flow. J. Fluid Mech. 683, 57–93 (2011)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Yamamoto, A., Hasegawa, Y., Kasagi, N.: Optimal control of dissimilar heat and momentum transfer in a fully developed turbulent channel flow. J. Fluid Mech. 733, 189–220 (2013)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Kasagi, N., Suzuki, Y., Fukagata, K.: Microelectromechanical systems-based feedback control of turbulence for skin friction reduction. Annu. Rev. Fluid Mech. 41, 231–251 (2009)

    Article  Google Scholar 

  6. 6.

    Uchino, K., Mamori, H., Fukagata, K.: Heat transfer in fully developed turbulent channel flow with streamwise traveling wave-like wall deformation. J. Therm. Sci. Technol. 12(1), JTST0003 (2017)

    Article  Google Scholar 

  7. 7.

    Katoh, K., Sakai, A., Fujii, R., Wakimoto, T., ant Kawahara, G.: Influence of spanwise vorticity on dissimilarity between turbulent momentum and heat transfer. Trans. Jpn. Soc. Mech. Eng. 79(806), 2019–2029 (2013). (In Japanese)

    Article  Google Scholar 

  8. 8.

    Motoki, S., Kawahara, G., Shimizu, M.: Optimal heat transfer enhancement in plane Couette flow. J. Fluid Mech. 835, 1157–1198 (2018)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Fukagata, K., Iwamoto, K., Kasagi, N.: Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys. Fluids 14(11), L73 (2002)

    Article  Google Scholar 

  10. 10.

    Bottin, S., Chaté, H.: Statistical analysis of the transition to turbulence in plane Couette flow. Eur. Phys. J. B Condens. Matter Complex Syst. 6(1), 143–155 (1998)

    Article  Google Scholar 

  11. 11.

    Prigent, A., Grégoire, G., Chaté, H., Dauchot, O., van Saarloos, W.: Large-scale finite-wavelength modulation within turbulent shear flows. Phys. Rev. Lett. 89(1), 014,501 (2002)

    Article  Google Scholar 

  12. 12.

    Barkley, D., Tuckerman, L.S.: Computational study of turbulent laminar patterns in Couette flow. Phys. Rev. Lett. 94(1), 014,502 (2005)

    Article  Google Scholar 

  13. 13.

    Barkley, D., Tuckerman, L.S.: Mean flow of turbulent-laminar patterns in plane Couette flow. J. Fluid Mech. 576, 109–137 (2007)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Tsukahara, T., Kawaguchi, Y., Kawamura, H.: (2009) DNS of turbulent plane Couette flow with emphasis on turbulent stripe. In: Eckhardt, B. (ed.) Advances in Turbulence XII. Springer Proceedings in Physics, vol 132, pp. 71–74. Springer, Berlin, Heidelberg (2009)

    Chapter  Google Scholar 

  15. 15.

    Duguet, Y., Schlatter, P., Henningson, D.S.: Formation of turbulent patterns near the onset of transition in plane Couette flow. J. Fluid Mech. 650, 119–129 (2010)

    Article  Google Scholar 

  16. 16.

    Duguet, Y., Schlatter, P.: Oblique laminar-turbulent interfaces in plane shear flows. Phys. Rev. Lett. 110(3), 034,502 (2013)

    Article  Google Scholar 

  17. 17.

    Manneville, P.: On the decay of turbulence in plane Couette flow. Fluid Dyn. Res. 43(6), 065,501 (2011)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Manneville, P.: On the growth of laminar–turbulent patterns in plane Couette flow. Fluid Dyn. Res. 44(3), 031,412 (2012)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Manneville, P.: Transition to turbulence in wall-bounded flows: where do we stand? Mech. Eng. Rev. 3(2), 15—00,684 (2016)

    Article  Google Scholar 

  20. 20.

    Tuckerman, L.S., Barkley, D.: Patterns and dynamics in transitional plane Couette flow. Phys. Fluids 23(4), 041,301 (2011)

    Article  Google Scholar 

  21. 21.

    Tsukahara, T., Kawamura, H.: Turbulent Heat Transfer in a Channel Flow at Transitional Reynolds Numbers. arXiv:1406.0959 (2014)

  22. 22.

    Kim, J., Moin, P., Moser, R.: Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133–166 (1987)

    Article  Google Scholar 

  23. 23.

    Fukudome, K., Iida, O.: Large-scale flow structure in turbulent Poiseuille flows at low-Reynolds numbers. J. Fluid Sci. Technol. 7(1), 181–195 (2012)

    Article  Google Scholar 

  24. 24.

    Robertson, J.M., Johnson, H.F.: Turbulence structure in plane Couette flow. J. Eng. Mech. Div. 96(6), 1171–1182 (1970)

    Google Scholar 

  25. 25.

    El Telbany, M., Reynolds, A.: The structure of turbulent plane Couette flow. J. Fluids Eng. 104(3), 367–372 (1982)

    Article  Google Scholar 

  26. 26.

    Tsukahara, T., Kawamura, H., Shingai, K.: DNS of turbulent Couette flow with emphasis on the large-scale structure in the core region. J. Turbul. 7, N19 (2006)

    Article  Google Scholar 

  27. 27.

    Couette, M.: Studies relating to the motion of liquids. Ann. Chim. Phys. 21(6), 433–510 (1890)

    Google Scholar 

  28. 28.

    Kitoh, O., Nakabyashi, K., Nishimura, F.: Experimental study on mean velocity and turbulence characteristics of plane Couette flow: low-Reynolds-number effects and large longitudinal vortical structure. J. Fluid Mech. 539, 199–227 (2005)

    Article  Google Scholar 

  29. 29.

    Leutheusser, H.J., Chu, V.H.: Experiments on plane Couette flow. J. Hydraul. Div. 97(9), 1269–1284 (1971)

    Google Scholar 

Download references


This work was partially supported by JSPS (Japan Society for the Promotion of Science) KAKENHI Grants No. 16H06066.

Author information



Corresponding author

Correspondence to Koji Fukudome.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fukudome, K., Tsukahara, T. & Ogami, Y. Heat and momentum transfer of turbulent stripe in transitional-regime plane Couette flow. Int J Adv Eng Sci Appl Math 10, 291–298 (2018).

Download citation


  • Direct numerical simulation
  • Dissimilarity
  • Subcritical transition
  • Turbulent heat transfer
  • Wall turbulence