Advertisement

Parameter estimation of fiber lay-down in nonwoven production: an occupation time approach

  • Wolfgang Bock
  • Thomas GötzEmail author
  • Uditha Prabhath Liyanage
Article
  • 62 Downloads

Abstract

In this paper we investigate the parameter estimation of the fiber lay-down process in the production of nonwovens. The parameter estimation is based on the mass per unit area data, which is available at least on an industrial scale. We introduce a stochastic model to represent the fiber lay-down and through the model’s parameters we characterize this fiber lay-down. Based on the occupation time, which is the equivalent quantity for the mass per unit area in the context of stochastic dynamical systems, an optimization procedure is formulated that estimates the parameters of the model. The optimization procedure is tested using occupation time data given by Monte–Carlo simulations. The feasibility of the optimization procedure on an industrial level is tested using the fiber paths simulated by the industrial software FYDIST.

Keywords

Parameter estimation Fiber-Lay down Ornstein–Uhlenbeck 

References

  1. 1.
    Bock, W., Götz, T., Grothaus, M., Liyanage. U.: Parameter estimation from occupation times (2011). arXiv:1105.5552v1 [math.NA]
  2. 2.
    Bonilla, L., Götz, T., Klar, A., Marheineke, N., Wegener, R.: Hydrodynamic limit of a Fokker–Planck equation describing fiber lay-down processes. SIAM J. Appl. Math. 68(3), 648–665 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Götz, T., Klar, A., Marheineke, N., Wegener, R.: A stochastic model for the fiber lay-down process in the nonwoven production. SIAM J. Appl. Math. 67(6), 1704–1717 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Kloeden, P., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, Berlin (1992)CrossRefzbMATHGoogle Scholar
  5. 5.
    MathWorks. MATLAB 7 Function Reference, (2007)Google Scholar
  6. 6.
    Müller-Gronbach, T., Ritter, K.: Variable subspace sampling and multi-level algorithms. In: L’Ecuyer, P., Owen, A. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2008, pp. 131–156. Springer, Berlin (2009)CrossRefGoogle Scholar

Copyright information

© Indian Institute of Technology Madras 2018

Authors and Affiliations

  • Wolfgang Bock
    • 1
  • Thomas Götz
    • 2
    Email author
  • Uditha Prabhath Liyanage
    • 3
  1. 1.Department of MathematicsUniversity of KaiserslauternKaiserslauternGermany
  2. 2.Mathematical Institute, Campus KoblenzUniversity Koblenz–LandauKoblenzGermany
  3. 3.Department of Statistics and Computer ScienceUniversity of KelaniyaKelaniyaSri Lanka

Personalised recommendations