Abstract
In this paper, an approach to integrating nanoindentation testing and finite element simulations is introduced to compute the fracture toughness of cementitious materials. Calcium silicate hydrate (C–S–H) was synthesized using the standard procedure of mixing calcium oxide (CaO) and silicate (SiO2) at a mixture ratio of 1.5. C–S–H powder was filtered, dried to a relative humidity of 11%, and then compacted at 400 MPa. Nanoindentation tests incorporating dwell time were performed on polished C–S–H specimens using a Berkovich indenter tip. The reduced elastic moduli of the C–S–H specimens were extracted from the nanoindentation measurements. Viscoelastic and viscoelastic-plastic finite element models with creep and cracking capabilities were developed to simulate the nanoindentation tests and to extract the fracture energy. The viscoelastic-plastic model utilized the extended finite element method (XFEM) to describe cracking and evaluate the cracking surface of C–S–H. The analysis showed that the proposed approach could fairly predict the fracture energy release rate and thus fracture toughness of C–S–H. The calculated fracture toughness was in agreement with the fracture toughness values reported in the literature.
This is a preview of subscription content, access via your institution.















References
Taylor, H.F.W.: Cement Chemistry, 2nd ed., Thomas Telford Publishing (1997)
Jennings, H.M.: A model for the microstructure of calcium silicate in cement paste. Cem. Concr. Res. 30, 855–863 (2000)
Beaudoin, J.J., Feldman, R.F.: Dependence of degree of silica polymerization and intrinsic mechanical properties of C–S–H on C/S ratio. In: 8th International Congress on the Chemistry of Cement, Brazil, vol. 3, pp. 337–342 (1986)
Alizadeh, R., Beaudoin, J.J., Raki, L.: Mechanical properties of calcium silicate hydrates. Mater. Struct. 44, 13–28 (2010)
Kim, J.J., Foley, E.M., Reda Taha, M.M.: Nano-mechanical characterization of synthetic calcium–silicate–hydrate (C–S–H) with varying CaO/SiO2 mixture ratios. Cem. Concr. Compos. 36, 65–70 (2013)
Constantinides, G., Ulm, F.J.: The effect of two types of C–S–H on the elasticity of cement based materials: results from nanoindentation and micro modeling. Cem. Concr. Res. 34, 67–80 (2004)
Sugiyama, D.: Chemical alteration of calcium silicate hydrate (C–S–H) in sodium chloride solution. Cem. Concr. Res. 38, 1270–1275 (2008)
Foley, E.M., Kim, J.J., Reda Taha, M.M.: Synthesis and nano-mechanical characterization of C–S–H with a 1.5 C/S ratio. Cem. Concr. Res. 42, 1225–1232 (2012)
Lodeiro, I.G., Macphee, D.E., Palomo, A., Fernández-Jiménez, A.: Effect of alkalis on fresh C–S–H gels. FTIR analysis. Cem. Concr. Res. 39, 147–153 (2009)
Higgins, D.D., Bailey, J.E.: Fracture measurements on cement paste. J. Mater. Sci. 11(11), 1995–2003 (1976)
Jenq, Y.S., Shah, S.P.: A fracture toughness criterion for concrete. Eng. Fract. Mech. 21(5), 1055–1069 (1985)
Hillemeier, B., Hilsdorf, H.K.: Fracture mechanics studies on concrete compounds. Cem. Concr. Res. 7(5), 523–535 (1977)
Dwivedi, V. S., Pratt, P. L.: Strength, fracture and deformation behaviour of Portland cement paste. In: ICF6, New Delhi (India) 1984
Beaudoin, J.J., Gu, P., Myers, R.E.: The fracture of CSH and CSH/CH mixtures. Cem. Concr. Res. 28(3), 341–347 (1998)
Cotterell, B., Mai, Y.W.: Crack growth resistance curve and size effect in the fracture of cement paste. J. Mater. Sci. 22(8), 2734–2738 (1987)
Hoover, C.G., Ulm, F.J.: Experimental chemo-mechanics of early-age fracture properties of cement paste. Cem. Concr. Res. 75, 42–52 (2015)
Bauchy, M., Laubie, H., Qomi, M.A., Hoover, C.G., Ulm, F.J., Pellenq, R.M.: Fracture toughness of calcium–silicate–hydrate from molecular dynamics simulations. J. Non-Cryst. Solids 419, 58–64 (2015)
Bauchy, M., Wang, B., Wang, M., Yu, Y., Qomi, M.J.A., Smedskjaer, M.M., Bichara, C., Ulm, F., Pellenq, R.: Fracture toughness anomalies: viewpoint of topological constraint theory. Acta Mater. 121, 234–239 (2016)
Fisher-Cripps, A.C.: Nanoindentation. Springer, New York (2004)
Kumar, R., Narasimhan, R.: Analysis of spherical indentation of linear viscoelastic materials. Curr. Sci. 87, 1088–1095 (2004)
Oyen, M.L.: Sensitivity of polymer nanoindentation creep measurements to experimental variables. Acta Mater. 55(11), 3633–3639 (2007)
Fischer-Cripps, A.C.: A simple phenomenological approach to nanoindentation creep. Mater. Sci. Eng., A 385(1), 74–82 (2004)
Lu, H., Wang, B., Ma, J., Huang, G., Viswanathan, H.: Measurement of creep compliance of solid polymers by nanoindentation. Mech. Time Depend. Mater. 7(3), 189–207 (2003)
Tweedie, C.A., Van Vliet, K.J.: Contact creep compliance of viscoelastic materials via nanoindentation. J. Mater. Res. 21(06), 1576–1589 (2006)
Němeček, J.: Creep effects in nanoindentation of hydrated phases of cement pastes. Mater. Charact. 60(9), 1028–1034 (2009)
Harding, D.S., Oliver, W.C., Pharr, G.M.: Cracking during nanoindentation and its use in the measurement of fracture toughness. In: Materials Research Symposium Proceedings. Houston, USA, pp. 663–668 (1995)
Field, J.S., Swain, M.V., Dukino, R.D.: Determination of fracture toughness from the extra penetration produced by indentation-induced pop-in. J. Mater. Res. 18, 1412–1419 (2003)
Chen, J., Bull, S.J.: Indentation fracture and toughness assessment for thin optical coatings on glass. J. Appl. Phys. 40, 5401–5417 (2007)
Bolshakov, A., Oliver, W.C., Pharr, G.M.: Influences of stress on the measurement of mechanical properties using nanoindentation: Part II. Finite element simulations. J. Mater. Res. 11, 760–768 (1996)
Lichinchi, M., Lenardi, C., Haupt, J., Vitali, R.: Simulation of Berkovich nanoindentation experiments on thin films using finite element method. Thin Solid Films 312, 240–248 (1998)
Bressan, J.D., Tramontin, A., Rosa, C.: Modeling of nanoindentation of bulk and thin film by finite element method. Wear 258, 115–122 (2005)
Walter, C., Antretter, T., Daniel, R., Mitterer, C.: Finite element simulation of the effect of surface roughness on nanoindentation of thin films with spherical indenters. Surf. Coat. Technol. 202, 1103–1107 (2007)
Sarris, E., Constantinides, G.: Finite element modeling of nanoindentation on C–S–H: effect of pile-up and contact friction. Cem. Concr. Compos. 36, 78–84 (2013)
Asroun, N., Asroun, A.: Simulation of viscoelastic and plastic deformation of C–S–H of cement paste at very low (w/c) mass ratio. In: 1st International Symposium on Innovative Technologies in Engineering And Science. Sakarya, Turkey, pp. 575–583 (2013)
Perzyński, K., Madej, Ł.: Numerical modeling of fracture during nanoindentation of the TiN coatings obtained with the PLD process. Bull. Polish Acad. Sci. Tech. Sci. 61, 973–978 (2013)
Csanádi, T., Németh, D., Lofaj, F.: Mechanical properties of hard WC coating on steel substrate deduced from nanoindentation and finite element modeling. Exp. Mech. 1–13 (2016). doi:10.1007/s11340-016-0190-x
Bažant, Z.P., Hauggaard, A.B., Baweja, S., Ulm, F.J.: Microprestress-solidification theory for concrete creep. I: aging and drying effects. J. Eng. Mech. 123(11), 1188–1194 (1997)
ASTM Standard E 104-02: Standard Practice for maintaining constant relative humidity by means of aqueous solution. ASTM International (2007)
Kim, J.J., Rahman, M.K., Reda Taha, M.M.: Examining microstructural composition of hardened cement paste cured under high temperature and pressure using nanoindentation and 29Si MAS NMR. Appl. Nanosci. 2(4), 445–456 (2012)
Aboubakr, S.H., Begaye, M.L., Soliman, E., Reda Taha, M.M.: Correlating microstructural features, elastic, and viscoelastic characteristics of synthetic CSH. ACI Spec. Publ. 312, 1–12 (2016)
Miller, M., Bobko, C., Vandamme, M., Ulm, F.J.: Surface roughness criteria for cement paste nanoindentation. Cem. Concr. Res. 38(4), 467–476 (2008)
Vandamme, M., Ulm, F.J.: Nanoindentation investigation of creep properties of calcium silicate hydrates. Cem. Concr. Res. 52, 38–52 (2013)
Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992)
Kabele, P., Davydov, D., Jůn, P., Němeček, J., Jirásek, M.: Study of micromechanical behavior of cement paste by integration of experimental nanoindentation and numerical analysis. Creep, shrinkage and durability mechanics of concrete and concrete structures: Proceedings of the CONCREEP, 8, pp. 89–96 (2008)
Pichler, C., Lackner, R.: Identification of logarithmic-type creep of calcium–silicate–hydrates by means of nanoindentation. Strain 45(1), 17–25 (2009)
Němeček, J.: Nanoindentation of heterogeneous structural materials. Habilitační práce, CTU Reports, 14 (2010)
Grasley, Z. C., Jones, C. A., Li, X., Garboczi, E. J., Bullard, J. W.: Elastic and viscoelastic properties of calcium silicate hydrate. In: 4th International Symposium on Nanotechnology in Construction, 2012
Resapu, R. R., Bradshaw, R. D.: Analysis of berkovich indentation of viscoelastic materials using finite element analysis. In: Proceedings of the XI International Congress and Exposition June 2–5, 2008 Orlando, Florida USA
Bower, A. F.: Applied mechanics of solids. CRC Press (2009)
Kim, Y. R., Guddati, M. N., Underwood, B. S., Yun, T. Y., Subramanian, V., Savadatti, S.: Development of a multiaxial viscoelastoplastic continuum damage model for asphalt mixtures (No. FHWA-HRT-08-073), 2009
Penny, R.K., Marriott, D.L.: Design for Creep. Springer, Dordrecht (2012)
Goodall, R., Clyne, T.W.: A critical appraisal of the extraction of creep parameters from nanoindentation data obtained at room temperature. Acta Mater. 54(20), 5489–5499 (2006)
Dean, J., Bradbury, A., Aldrich-Smith, G., Clyne, T.W.: A procedure for extracting primary and secondary creep parameters from nanoindentation data. Mech. Mater. 65, 124–134 (2013)
Simulia. ABAQUS analysis user’s manual guide. Abaqus 6.14 Documentation, pp. 22–22 (2014)
Lubliner, J., Oliver, J., Oller, S., Onate, E.: A plastic-damage model for concrete. Int. J. Solids Struct. 25(3), 299–326 (1989)
Bažant, Z.P.: Concrete fracture models: testing and practice. Eng. Fract. Mech. 69(2), 165–205 (2002)
Jirasek, M., Rolshoven, S., Grassl, P.: Size effect on fracture energy induced by non-locality. Int. J Numer. Anal. Met. 28(7–8), 653–670 (2004)
Nguyen, G. D.: A thermodynamic approach to constitutive modelling of concrete using damage mechanics and plasticity theory. Ph.D. dissertation, University of Oxford, Oxford, UK, 2005
Allison, P., Moser, R.D., Chandler, M.Q., Rushing, T.S., Williams, B.A., Cummins, T.K.: Nanomechanical structure–property relations of dynamically loaded reactive powder concrete. Mater. Charact. V, 287–298 (2011)
Asroun, N., Asroun, A.: The visco-elasto-plastic behavior of cement paste at nanoscale. Int. J. Eng. Res. Technol. 2(6) (2013)
Pellenq, R.J.M., Kushima, A., Shahsavari, R., Van Vliet, K.J., Buehler, M.J., Yip, S., Ulm, F.J.: A realistic molecular model of cement hydrates. Proc. Natl. Acad. Sci. 106(38), 16102–16107 (2009)
Manzano, H., Pellenq, R.J., Ulm, F.J., Buehler, M.J., van Duin, A.C.: Hydration of calcium oxide surface predicted by reactive force field molecular dynamics. Langmuir 28(9), 4187–4197 (2012)
Hou, D., Zhu, Y., Lu, Y., Li, Z.: Mechanical properties of calcium silicate hydrate (C–S–H) at nano-scale: a molecular dynamics study. Mater. Chem. Phys. 146(3), 503–511 (2014)
Hou, D., Zhao, T., Wang, P., Li, Z., Zhang, J.: Molecular dynamics study on the mode I fracture of calcium silicate hydrate under tensile loading. Eng. Fract. Mech. 131, 557–569 (2014)
Shah, S.P.: Fracture toughness of cement-based materials. Mater. Struct. 21, 145–150 (1988)
Acknowledgements
The experimental work performed herein was supported by the National Science Foundation (NSF) Award #1131369. The authors acknowledge this financial support. Additional support to the authors by the University of New Mexico, USA and Assiut University, Egypt to conduct the computational work presented herein is greatly appreciated. Special thanks to Ms. Elisa Borowski for her detailed editorial review of the manuscript.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Soliman, E.M., Aboubakr, S.H. & Reda Taha, M.M. Estimating fracture toughness of C–S–H using nanoindentation and the extended finite element method. Int J Adv Eng Sci Appl Math 9, 154–168 (2017). https://doi.org/10.1007/s12572-017-0191-8
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12572-017-0191-8
Keywords
- C–S–H
- Nanoindentation
- Fracture toughness
- XFEM
- Creep
- Viscoelasticity