Skip to main content
Log in

Development of ductile cementitious composites incorporating microencapsulated phase change materials

  • Published:
International Journal of Advances in Engineering Sciences and Applied Mathematics Aims and scope Submit manuscript

Abstract

In the past two decades, much research has been devoted to overcoming the inherent brittleness of cementitious materials. To that end, several solutions have been proposed, mainly utilizing fibres. One of the most promising classes of materials is strain hardening cementitious composite (SHCC). It utilizes PVA fibres, and it is relatively costly compared to regular concrete, so it is commonly used only in surface layers. In this paper, a multi-functional ductile cementitious composite based on SHCC has been developed. It uses microencapsulated phase change materials (PCMs), capable of reducing temperature fluctuations in the material due to their high heat of fusion. It is shown that, although addition of microencapsulated PCMs are detrimental to compressive strength, they have very little effect on the flexural strength and deflection capacity. In the future work, mixtures with higher PCM contents will be developed in order to exploit their heat storage capability better. This material has potential to reduce temperature effects on concrete surfaces, while at the same time being extremely ductile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Van Mier, J.G.: Fracture Processes of Concrete, vol. 12. CRC Press, Boca Raton (1996)

    Google Scholar 

  2. Zhang, P., Wittmann, F., Zhao, T., Lehmann, E.: Neutron imaging of water penetration into cracked steel reinforced concrete. Phys. B Condens. Matter 405(7), 1866–1871 (2010)

    Article  Google Scholar 

  3. Šavija, B., Schlangen, E., Pacheco, J., Millar, S., Eichler, T., Wilsch, G.: Chloride ingress in cracked concrete: a laser induced breakdown spectroscopy (libs) study. J. Adv. Concr. Technol. 12(10), 425–442 (2014)

    Article  Google Scholar 

  4. Blagojević, A.: The Influence of Cracks on the Durability and Service Life of Reinforced Concrete Structures in relation to Chloride-Induced Corrosion: A Look from a Different Perspective. Delft University of Technology, Delft (2016)

    Google Scholar 

  5. Pacheco Farias, J.: Corrosion of Steel in Cracked Concrete: Chloride Microanalysis and Service Life Predictions. Delft University of Technology, Delft (2015)

    Google Scholar 

  6. Li, V.C.: On engineered cementitious composites (ecc). J. Adv. Concr. Technol. 1(3), 215–230 (2003)

    Article  Google Scholar 

  7. Li, V.C., Wang, S., Wu, C.: Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (pva-ecc). ACI Mater. J. 98(6), 483–492 (2001)

    Google Scholar 

  8. Maalej, M., Li, V.C.: Introduction of strain-hardening engineered cementitious composites in design of reinforced concrete flexural members for improved durability. Struct. J. 92(2), 167–176 (1995)

    Google Scholar 

  9. Kanda, T., Li, V.C.: New micromechanics design theory for pseudostrain hardening cementitious composite. J. Eng. Mech. 125(4), 373–381 (1999)

    Article  Google Scholar 

  10. Zhou, J., Qian, S., Beltran, M.G.S., Ye, G., van Breugel, K., Li, V.C.: Development of engineered cementitious composites with limestone powder and blast furnace slag. Mater. Struct. 43(6), 803–814 (2010)

    Article  Google Scholar 

  11. Mechtcherine, V.: Towards a durability framework for structural elements and structures made of or strengthened with high-performance fibre-reinforced composites. Constr. Build. Mater. 31, 94–104 (2012)

    Article  Google Scholar 

  12. Sahmaran, M., Li, V.C., Andrade, C.: Corrosion resistance performance of steel-reinforced engineered cementitious composite beams. ACI Mater. J. 105(3), 243–250 (2008)

    Google Scholar 

  13. Šavija, B., Luković, M., Hosseini, S.A.S., Pacheco, J., Schlangen, E.: Corrosion induced cover cracking studied by x-ray computed tomography, nanoindentation, and energy dispersive x-ray spectrometry (eds). Mater. Struct. 48(7), 2043–2062 (2015)

    Article  Google Scholar 

  14. Kamal, A., Kunieda, M., Ueda, N., Nakamura, H.: Evaluation of crack opening performance of a repair material with strain hardening behavior. Cem. Concr. Compos. 30(10), 863–871 (2008)

    Article  Google Scholar 

  15. Lim, Y.M., Li, V.C.: Durable repair of aged infrastructures using trapping mechanism of engineered cementitious composites. Cem. Concr. Compos. 19(4), 373–385 (1997)

    Article  Google Scholar 

  16. Luković, M.: Influence of interface and strain hardening cementitious composite (shcc) properties on the performance of concrete repairs. Ph.D. thesis, Delft University of Technology, Delft (2016)

  17. Luković, M., Dong, H., Šavija, B., Schlangen, E., Ye, G., van Breugel, K.: Tailoring strain-hardening cementitious composite repair systems through numerical experimentation. Cem. Concr. Compos. 53, 200–213 (2014)

    Article  Google Scholar 

  18. Sierra-Beltran, M.G., Jonkers, H., Schlangen, E.: Characterization of sustainable bio-based mortar for concrete repair. Constr. Buil. Mater. 67, 344–352 (2014)

    Article  Google Scholar 

  19. Snoeck, D., Van Tittelboom, K., Steuperaert, S., Dubruel, P., De Belie, N.: Self-healing cementitious materials by the combination of microfibres and superabsorbent polymers. J. Intell. Mater. Syst. Struct. 25(1), 13–24 (2014)

    Article  Google Scholar 

  20. Li, M., Lin, V., Lynch, J., Li, V.: Multifunctional carbon black engineered cementitious composites for the protection of critical infrastructure. In: Para-Montesinos, G.J., Reinhardt, H.W., Naaman, A.E (eds.) High Performance Fiber Reinforced Cement Composites 6, pp. 99–106. Springer (2012)

  21. Ranade, R., Zhang, J., Lynch, J.P., Li, V.C.: Influence of micro-cracking on the composite resistivity of engineered cementitious composites. Cem. Concr. Res. 58, 1–12 (2014)

    Article  Google Scholar 

  22. Zalba, B., Marın, J.M., Cabeza, L.F., Mehling, H.: Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl. Therm. Eng. 23(3), 251–283 (2003)

    Article  Google Scholar 

  23. Hawes, D.W., Banu, D., Feldman, D.: Latent heat storage in concrete. Solar Energy Mater. 19(3), 335–348 (1989)

    Article  Google Scholar 

  24. Snoeck, D., Priem, B., Dubruel, P., De Belie, N.: Encapsulated phase-change materials as additives in cementitious materials to promote thermal comfort in concrete constructions. Mater. Struct. 49(1–2), 225–239 (2016)

    Article  Google Scholar 

  25. Bentz, D.P., Turpin, R.: Potential applications of phase change materials in concrete technology. Cem. Concr. Compos. 29(7), 527–532 (2007)

    Article  Google Scholar 

  26. Sakulich, A.R., Bentz, D.P.: Increasing the service life of bridge decks by incorporating phase-change materials to reduce freeze-thaw cycles. J. Mater. Civil Eng. 24(8), 1034–1042 (2011)

    Article  Google Scholar 

  27. Farnam, Y., Krafcik, M., Liston, L., Washington, T., Erk, K., Tao, B., Weiss, J.: Evaluating the use of phase change materials in concrete pavement to melt ice and snow. J. Mater. Civil Eng. 28(4), 04015,161 (2015)

    Article  Google Scholar 

  28. Fernandes, F., Manari, S., Aguayo, M., Santos, K., Oey, T., Wei, Z., Falzone, G., Neithalath, N., Sant, G.: On the feasibility of using phase change materials (pcms) to mitigate thermal cracking in cementitious materials. Cem. Concr. Compos. 51, 14–26 (2014)

    Article  Google Scholar 

  29. Thiele, A.M., Wei, Z., Falzone, G., Young, B.A., Neithalath, N., Sant, G., Pilon, L.: Figure of merit for the thermal performance of cementitious composites containing phase change materials. Cem. Concr. Compos. 65, 214–226 (2016)

    Article  Google Scholar 

  30. Hunger, M., Entrop, A., Mandilaras, I., Brouwers, H., Founti, M.: The behavior of self-compacting concrete containing micro-encapsulated phase change materials. Cem. Concr. Compos. 31(10), 731–743 (2009)

    Article  Google Scholar 

  31. Aguayo, M., Das, S., Maroli, A., Kabay, N., Mertens, J.C., Rajan, S.D., Sant, G., Chawla, N., Neithalath, N.: The influence of microencapsulated phase change material (pcm) characteristics on the microstructure and strength of cementitious composites: Experiments and finite element simulations. Cem. Concr. Compos. 73, 29–41 (2016)

    Article  Google Scholar 

  32. Liu, D., Šavija, B., Smith, G.E., Flewitt, P.E., Lowe, T., Schlangen, E.: Towards understanding the influence of porosity on mechanical and fracture behaviour of quasi-brittle materials: experiments and modelling. Int. J. Fract. 205(1), 57–72 (2017)

  33. Yaşar, E., Erdoğan, Y.: Estimation of rock physicomechanical properties using hardness methods. Eng. Geol. 71(3), 281–288 (2004)

    Google Scholar 

  34. Tosun-Felekoğlu, K., Felekoğlu, B., Ranade, R., Lee, B.Y., Li, V.C.: The role of flaw size and fiber distribution on tensile ductility of pva-ecc. Compos. Part B Eng. 56, 536–545 (2014)

    Article  Google Scholar 

  35. Li, M.: Multi-scale design for durable repair of concrete structures. Ph.D. thesis, The University of Michigan (2009)

  36. Mechtcherine, V., Millon, O., Butler, M., Thoma, K.: Mechanical behaviour of strain hardening cement-based composites under impact loading. Cem. Concr. Compos. 33(1), 1–11 (2011)

    Article  Google Scholar 

  37. Jun, P., Mechtcherine, V.: Behaviour of strain-hardening cement-based composites (shcc) under monotonic and cyclic tensile loading: part 1-experimental investigations. Cem. Concr. Compos. 32(10), 801–809 (2010)

    Article  Google Scholar 

  38. Pal, S., Mukherjee, A., Pathak, S.: Investigation of hydraulic activity of ground granulated blast furnace slag in concrete. Cem. Concr. Res. 33(9), 1481–1486 (2003)

    Article  Google Scholar 

  39. Sakulich, A.R., Bentz, D.P.: Incorporation of phase change materials in cementitious systems via fine lightweight aggregate. Constr. Build. Mater. 35, 483–490 (2012)

    Article  Google Scholar 

  40. Šavija, B., Schlangen, E.: Use of phase change materials (pcms) to mitigate early age thermal cracking in concrete: Theoretical considerations. Constr. Buil. Mater. 126, 332–344 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

A major part of this study was performed as a final year BSc project by G.M.G.Kotteman. The first author gratefully acknowledge funding from European Unions Seventh Framework Programme for research, technological development and demonstration under The ERA-NET Plus Infravation programme, Grant Agreement No.: 31109806.0001. The authors would like to thank Encapsys, LLC, for providing the encapsulated PCMs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Branko Šavija.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šavija, B., Luković, M., Kotteman, G.M.G. et al. Development of ductile cementitious composites incorporating microencapsulated phase change materials. Int J Adv Eng Sci Appl Math 9, 169–180 (2017). https://doi.org/10.1007/s12572-017-0182-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-017-0182-9

Keywords

Navigation