Skip to main content

Advertisement

Log in

Computational analysis of energy distribution of coupled blood flow and arterial deformation

  • Published:
International Journal of Advances in Engineering Sciences and Applied Mathematics Aims and scope Submit manuscript

Abstract

The present study analyzes the distribution and dissipation of the energy delivered to arteries. A computational model of blood flow and arterial deformation is used to examine the behavior of different constitutive models of arterial wall. In particular, we consider poroelastic and viscoelastic descriptions of the artery. Energy estimates are derived for each constitutive model of the arterial wall from the weak formulation of the fluid/solid coupled problem and are applied to assess energy exchange between different compartments of the model. The objective of this work is to determine new criteria, based on energy distribution, for the assessment of constitutive models of the arterial wall. Two-dimensional numerical experiments are presented to illustrate the energy distribution within the fluid and solid model compartments. Results highlight the importance of including both poroelasticity and viscoelasticity in modeling fluid-structure interaction in large arteries. Our results show that both viscoelastic and poroelastic models for the arterial walls absorb part of the input energy flowing to the artery, but the underlying mechanisms are substantially different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Caro, C.G., Pedley, T.J., Schroter, R.C., Seed, W.A., Parker, K.H.: The mechanics of the circulation, 2nd edn, pp. 1–524. The Mechanics of the Circulation, Oxford (2011)

    Book  Google Scholar 

  2. Barbenel, J.C.: The arterial wall. In: Rodkiewicz, C.M. (ed.) Arteries and Arterial Blood Flow, pp. 129–177. Springer, Vienna (1983)

    Chapter  Google Scholar 

  3. Humphrey, J.D., Delange, S.L.: An Introduction to Biomechanics: Solids and Fluids, Analysis and Design. Springer, New York (2004)

    Book  MATH  Google Scholar 

  4. Cowin, S.C., Humphrey, J.D.: Cardiovascular Soft Tissue Mechanics. Springer, New York (2001)

    Google Scholar 

  5. Cowin, S.C., Doty, S.B.: Tissue Mechanics, pp. 1–682. Springer, New York (2007)

    Book  MATH  Google Scholar 

  6. Bertolotti, C., Deplano, V.: Three-dimensional numerical simulations of flow through a stenosed coronary bypass. J. Biomech. 33(8), 1011–1022 (2000)

    Article  Google Scholar 

  7. Formaggia, L., Gerbeau, J.F., Nobile, F., Quarteroni, A.: On the coupling of 3D and 1D Navier–Stokes equations for flow problems in compliant vessels. Comput. Methods Appl. Mech. Eng. 191(6–7), 561–582 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gerbeau, J.-F., Vidrascu, M., Frey, P.: Fluid–structure interaction in blood flows on geometries based on medical imaging. Comput. Struct. 83(2–3), 155–165 (2005)

    Article  Google Scholar 

  9. Nobile, F.: Numerical approximation of fluid-structure interaction problems with application to haemodynamics. EPFL, Lausanne (2001)

    Google Scholar 

  10. Bazilevs, Y., Calo, V.M., Zhang, Y., Hughes, T.J.R.: Isogeometric fluid-structure interaction analysis with applications to arterial blood flow. Comput. Mech. 38(4–5), 310–322 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Skalak, R., Wiener, F., Morkin, E., Fishman, A.P.: The energy distribution in the pulmonary circulation, II: experiments. Phys. Med. Biol. 11(3), 437 (1966)

    Article  Google Scholar 

  12. Skalak, R., Wiener, F., Morkin, E., Fishman, A.P.: The energy distribution in the pulmonary circulation, I: theory. Phys. Med. Biol. 11(2), 287 (1966)

    Article  Google Scholar 

  13. Bertram, C.D.: Energy dissipation and pulse wave attenuation in the canine carotid artery. J. Biomech. 13(12), 1061–1073 (1980)

    Article  Google Scholar 

  14. Tsaturyan, A.K., Izacov, V.J., Zhelamsky, S.V., Bykov, B.L.: Extracellular fluid filtration as the reason for the viscoelastic behaviour of the passive myocardium. J. Biomech. 17(10), 749–755 (1984)

    Article  Google Scholar 

  15. Huyghe, J.M., Non-linear finite element models of the beating left ventricle and the intramyocardial coronary circulation. Ph.D. thesis (1986)

  16. Yang, M., Taber, L.A.: The possible role of poroelasticity in the apparent viscoelastic behavior of passive cardiac muscle. J. Biomech. 24(7), 587–597 (1991)

    Article  Google Scholar 

  17. Badia, S., Quaini, A., Quarteroni, A.: Coupling Biot and Navier–Stokes equations for modelling fluid-poroelastic media interaction. J. Comput. Phys. 228(21), 7986–8014 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tully, B., Ventikos, Y.: Coupling poroelasticity and cfd for cerebrospinal fluid hydrodynamics. IEEE Trans. Biomed. Eng. 56(6), 1644–1651 (2009)

    Article  Google Scholar 

  19. Bukač, M., Yotov, I., Zakerzadeh, R., Zunino, P.: Partitioning strategies for the interaction of a fluid with a poroelastic material based on a Nitsche’s coupling approach. Comput. Methods Appl. Mech. Eng. 292, 138–170 (2014)

    Google Scholar 

  20. Zakerzadeh, R., Zunino, P.: Fluid-structure interaction in arteries with a poroelastic wall model. 21st Iranian conference of biomedical engineering (ICBME) IEEE, pp. 35–39

  21. Armentano, R., Megnien, J.L., Simon, A., Bellenfant, F., Barra, J., Levenson, J.: Effects of hypertension on viscoelasticity of carotid and femoral arteries in humans. Hypertension. 26(1), 48–54 (1995)

    Article  Google Scholar 

  22. London, G.M., Pannier, B.: Arterial functions: how to interpret the complex physiology. Nephrol. Dial. Transplant. 25(12), 3815–3823 (2010)

    Article  Google Scholar 

  23. Canic, S., Hartley, C.J., Rosenstrauch, D., Tambaca, J., Guidoboni, G., Mikelic, A.: Blood flow in compliant arteries: an effective viscoelastic reduced model, numerics, and experimental validation. Ann. Biomed. Eng. 34(4), 575–592 (2006)

    Article  MATH  Google Scholar 

  24. Čanić, S., Tambača, J., Guidoboni, G., Mikelić, A., Hartley, C.J., Rosenstrauch, D.: Modeling viscoelastic behavior of arterial walls and their interaction with pulsatile blood flow. SIAM J. Appl. Math. 67(1), 164–193 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Armentano, R.L., Barra, J.G., Levenson, J., Simon, A., Pichel, R.H.: Arterial wall mechanics in conscious dogs. Assessment of viscous, inertial, and elastic moduli to characterize aortic wall behavior. Circ. Res. 76(3), 468–478 (1995)

    Article  Google Scholar 

  26. Bukac, M., Canic, S.: Longitudinal displacement in viscoelastic arteries: a novel fluid-structure interaction computational model, and experimental validation. Math. Biosci. Eng. 10(2), 295–318 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Badia, S., Quaini, A., Quarteroni, A.: Splitting methods based on algebraic factorization for fluid-structure interaction. SIAM J. Sci. Comput. 30(4), 1778–1805 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Warriner, R.K., Johnston, K.W., Cobbold, R.S.C.: A viscoelastic model of arterial wall motion in pulsatile flow: implications for Doppler ultrasound clutter assessment. Physiol. Meas. 29(2), 157–179 (2008)

    Article  Google Scholar 

  29. Girault, V., Wheeler, M.F., Ganis, B., Mear, M.E.: A lubrication fracture model in a poro-elastic medium. Mathematical Models and Methods in Applied Sciences, 27, 1–59, (2014)

    MathSciNet  MATH  Google Scholar 

  30. Grandmont, C., Lukáčová-Medvid’ová, M., Nečasová, Š.: Mathematical and numerical analysis of some FSI problems. In: Bodnár, T., Galdi, G.P., Nečasová, Š. (eds.) Fluid-Structure Interaction and Biomedical Applications, pp. 1–77. Springer, Basel (2014)

    Google Scholar 

  31. Muha, B., Čanić, S.: Existence of a solution to a fluid–multi-layered-structure interaction problem. J. Diff. Equ. 256(2), 658–706 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Badia, S., Quaini, A., Quarteroni, A.: Splitting methods based on algebraic factorization for fluid-structure interaction. SIAM J. Sci. Comput. 30(4), 1778–1805 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Brooks, A.N., Hughes, T.J.: Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 32(1), 199–259 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hecht, F.: New development in freefem+. J. Num. Math. 20(3–4), 251–265 (2012)

    MathSciNet  MATH  Google Scholar 

  35. Bukač, M., Čanić, S., Glowinski, R., Tambača, J., Quaini, A.: Fluid-structure interaction in blood flow capturing non-zero longitudinal structure displacement. J. Comput. Phys. 235, 515–541 (2013)

    Article  MathSciNet  Google Scholar 

  36. Burman, E., Fernández, M.A.: Stabilization of explicit coupling in fluid-structure interaction involving fluid incompressibility. Comput. Methods Appl. Mech. Eng. 198(5–8), 766–784 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hasegawa, H., Kanai, H.: Measurement of elastic moduli of the arterial wall at multiple frequencies by remote actuation for assessment of viscoelasticity. Jpn. J. Appl. Phys. 43(5S), 3197 (2004)

    Article  Google Scholar 

  38. Bukač, M., Čanić, S., Glowinski, R., Muha, B., Quaini, A.: A modular, operator-splitting scheme for fluid-structure interaction problems with thick structures. Int. J. Numer. Meth. Fluids 74(8), 577–604 (2014)

    Article  MathSciNet  Google Scholar 

  39. Quaini, A.: Algorithms for fluid-structure interaction problems arising in hemodynamics. J. Biomech. 42, 1705–1712 (2009)

    Article  Google Scholar 

  40. Bukac, M.: A Fluid-structure Interaction Model Capturing Longitudinal Displacement in Arteries: Modeling, Computational Method, and Comparison with Experimental Data. University of Houston, Houston (2012)

    Google Scholar 

  41. Craiem, D., Graf, S., Pessana, F., Grignola, J., Bia, D., Gines, F., Armentano, R.: Cardiovascular engineering: modelization of ventricular-arterial interaction in systemic and pulmonary circulation. Lat. Am. Appl. Res. 35(2), 111–114 (2005)

    Google Scholar 

  42. Govindaraju, K., Kamangar, S., Badruddin, I.A., Viswanathan, G.N., Badarudin, A., Salman, N.J.: Ahmed, Effect of porous media of the stenosed artery wall to the coronary physiological diagnostic parameter: a computational fluid dynamic analysis. Atherosclerosis 233(2), 630–635 (2014)

    Article  Google Scholar 

  43. Page, R.C., Schroeder, H.E.: Pathogenesis of inflammatory periodontal disease. A summary of current work. Lab. Invest. 34(3), 235–249 (1976)

    Google Scholar 

  44. Ayyalasomayajula, A., Vande Geest, J.P., Simon, B.R.: Porohyperelastic finite element modeling of abdominal aortic aneurysms. J. Biomech. Eng. 132(10), 104502 (2010)

    Article  Google Scholar 

  45. Dabagh, M., Jalali, P., Konttinen, Y.T., Sarkomaa, P.: Distribution of shear stress over smooth muscle cells in deformable arterial wall. Med. Biol. Eng. Comput. 46(7), 649–657 (2008)

    Article  Google Scholar 

  46. Prosi, M., Zunino, P., Perktold, K., Quarteroni, A.: Mathematical and numerical models for transfer of low-density lipoproteins through the arterial walls: a new methodology for the model set up with applications to the study of disturbed lumenal flow. J. Biomech. 38(4), 903–917 (2005)

    Article  Google Scholar 

  47. Polzer, S., Gasser, T.C., Markert, B., Bursa, J., Skacel, P.: Impact of poroelasticity of intraluminal thrombus on wall stress of abdominal aortic aneurysms. BioMed. Eng. Online 11, 62 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The fellowship support from the Computational Modeling & Simulation PhD program at University of Pittsburgh for Rana Zakerzadeh and partial support from the Department of Mechanical Engineering and Materials Science at University of Pittsburgh is gratefully acknowledged. Research of Dr. M. Bukac was partially supported by NSF via grant DMS-1318763.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Zunino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakerzadeh, R., Bukac, M. & Zunino, P. Computational analysis of energy distribution of coupled blood flow and arterial deformation. Int J Adv Eng Sci Appl Math 8, 70–85 (2016). https://doi.org/10.1007/s12572-015-0142-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-015-0142-1

Keywords

Navigation