Skip to main content
Log in

Pore-scale modeling and simulation of flow, transport, and adsorptive or osmotic effects in membranes: the influence of membrane microstructure

  • Published:
International Journal of Advances in Engineering Sciences and Applied Mathematics Aims and scope Submit manuscript

Abstract

The selection of an appropriate membrane for a particular application is a complex and expensive process. Computational modeling can significantly aid membrane researchers and manufacturers in this process. The membrane morphology is highly influential on its efficiency within several applications, but is often overlooked in simulation. Two such applications which are very important in the provision of clean water are forward osmosis and filtration using functionalized micro/ultra/nano-filtration membranes. Herein, we investigate the effect of the membrane morphology in these two applications. First we present results of the separation process using resolved finger- and sponge-like support layers. Second, we represent the functionalization of a typical microfiltration membrane using absorptive pore walls, and illustrate the effect of different microstructures on the reactive process. Such numerical modeling will aid manufacturers in optimizing operating conditions and designing efficient membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Cath, T., Childress, A., Elimelech, M.: Forward osmosis: principles, applications, and recent developments. J. Membr. Sci. 281(1–2), 70–87 (2006)

    Article  Google Scholar 

  2. Gruber, M., Johnson, C., Tang, C., Jensen, M., Yde, L., Hélix-Nielsen, C.: Validation and analysis of forward osmosis CFD model in complex 3D geometries. J. Membr. 2, 764–782 (2012)

    Article  Google Scholar 

  3. Sagiv, A., Zhu, A., Christofides, P., Cohen, Y., Semiat, R.: Analysis of forward osmosis desalination via two-dimensional fem model. J. Membr. Sci. 464, 161–172 (2014)

    Article  Google Scholar 

  4. Bhattacharjee, S., Ryan, J.N., Elimelech, M.: Virus transport in physically and geochemically heterogeneous subsurface porous media. J. Contam. Hydrol. 57(3–4), 161–187 (2002). doi:10.1016/s0169-7722(02)00007-4

    Article  Google Scholar 

  5. Kuhnen, F., Barmettler, K., Bhattacharjee, S., Elimelech, M., Kretzschmar, R.: Transport of iron oxide colloids in packed quartz sand media: monolayer and multilayer deposition. J. Colloid Interface Sci. 231(1), 32–41 (2000). doi:10.1006/jcis.2000.7097

    Article  Google Scholar 

  6. Sim, Y., Chrysikopoulos, C.V.: Virus transport in unsaturated porous media. Water Resour. Res. 36(1), 173–179 (2000). doi:10.1029/1999wr900302

    Article  Google Scholar 

  7. Raoof, A., Hassanizadeh, S.M., Leijnse, A.: Upscaling transport of adsorbing solutes in porous media: pore-network modeling. Vadose Zone J. 9, 624–636 (2010). doi:10.2136/vzj2010.0026

    Article  Google Scholar 

  8. Varloteaux, C., Vu, M.T., Békri, S., Adler, P.M.: Reactive transport in porous media: pore-network model approach compared to pore-scale model. Phys. Rev. E 87(2), 023010 (2013). doi:10.1103/PhysRevE.87.023010

    Article  Google Scholar 

  9. Iliev, O., Lakdawala, Z., Leonard, K.H.L., Vutov, Y.: On pore-scale modeling and simulation of reactive transport in 3D geometries. Submitted to Advances in Water Resources (2015). http://arxiv.org/abs/1507.01894

  10. Sablani, S., Goosen, M., Al-Belushi, R., Wilf, M.: Concentration polarization in ultrafiltration and reverse osmosis: a critical review. Desalination 141(3), 269–289 (2001)

    Article  Google Scholar 

  11. der Bruggen, B.V.: Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry. Environ. Pollut. 122(3), 435–445 (2003)

    Article  Google Scholar 

  12. Liu, F., Hashim, N.A., Liu, Y., Abed, M.R.M., Li, K.: Progress in the production and modification of PVDF membranes. J. Membr. Sci. 375(1—-2), 1–27 (2011)

    Article  Google Scholar 

  13. Shi, M., Printsypar, G., Iliev, O., Calo, V., Amy, G., Nunes, S.: Water flow prediction based on 3-d membrane morphology simulation. J. Membr. Sci. 487, 19–31 (2015)

    Article  Google Scholar 

  14. McCutcheon, J., Elimelech, M.: Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis. J. Membr. Sci. 284, 237–247 (2006)

    Article  Google Scholar 

  15. Hunter, P.R., MacDonald, A.M., Carter, R.C.: Water supply and health. PLoS Med 7(11), e1000,361+ (2010)

    Article  Google Scholar 

  16. Pendergast, M.M., Hoek, M.V.: A review of water treatment membrane nanotechnologies. Energy Environ. Sci. 4(6), 1946–1971 (2011)

    Article  Google Scholar 

  17. Bruggen, B.V.D., Vandecasteele, C., Gestel, T.V., Doyen, W., Leysen, R.: A review of pressure-driven membrane processes in wastewater treatment and drinking water production. Environ. Prog. 22(1), 46–56 (2003). doi:10.1002/ep.670220116

    Article  Google Scholar 

  18. Lakdawala, Z.: On efficient algorithms for filtration related multiscale problems. Ph.D. Thesis, University of Kaiserslautern (2010)

  19. The virtual material laboratory geodict. urlhttp://www.geodict.com (2014)

  20. Mosthaf, K., Baber, K., Flemisch, B., Helmig, R., Leijnse, A., Rybak, I., Wohlmuth, B.: A coupling concept for two-phase compositional porous-medium and single-phase compositional free flow. Water Resour. Res. 47, 1–19 (2011)

    Article  Google Scholar 

  21. Ciegis, R., Iliev, O., Lakdawala, Z.: On parallel numerical algorithms for simulating industrial filtration problems. Berichte des Fraunhofer ITWM 114 7(2), 118–134 (2007)

    MathSciNet  MATH  Google Scholar 

  22. Laptev, V.: Numerical solution of coupled flow in plain and porous media. Ph.D. Thesis, Technical University Kaiserslautern (2004)

  23. Kralchevsky, P.A., Danov, K.D., Denkov, N.D.: Chemical physics of colloid systems and interfaces. In: Birdi, K.S. (ed.) Handbook of surface and colloid chemistry, 3rd edn. Taylor & Francis, Boca Raton (2008)

    Google Scholar 

  24. Kang, H.C., Weinberg, W.H.: Modeling the kinetics of heterogeneous catalysis. Chem. Rev. 95(3), 667–676 (1995). doi:10.1021/cr00035a010

    Article  Google Scholar 

  25. Baret, J.F.: Theoretical model for an interface allowing a kinetic study of adsorption. J Colloid Interface Sci. 30(1), 1–12 (1969). doi:10.1016/0021-9797(69)90373-7

    Article  Google Scholar 

  26. Allaire, G., Brizzi, R., Mikelić, A., Piatnitski, A.: Two-scale expansion with drift approach to the Taylor dispersion for reactive transport through porous media. Chem. Eng. Sci. 65(7), 2292–2300 (2010). doi:10.1016/j.ces.2009.09.010

    Article  Google Scholar 

  27. Allaire, G., Hutridurga, H.: Homogenization of reactive flows in porous media and competition between bulk and surface diffusion. IMA J. Appl. Math. 77(6), 788–815 (2012). doi:10.1093/imamat/hxs049

    Article  MathSciNet  MATH  Google Scholar 

  28. Allaire, G., Mikelić, A., Piatnitski, A.: Homogenization approach to the dispersion theory for reactive transport through porous media. Soc. Ind. Appl. Math. J. Math. Anal. 42(1), 125–144 (2010). doi:10.1137/090754935

    MATH  Google Scholar 

  29. Di Nicolò, E., Iliev, O., Leonard, K.: Virtual generation of microfiltration membrane geometry for the numerical simulation of contaminent transport. Technical Report 245, Fraunhofer-Institut für Techno-und Wirtschaftsmathematik ITWM (2015)

Download references

Acknowledgments

We would like to thank Prof. Suzana Nunes and Meixia Shi from the Water Desalination and Reuse Center in KAUST for providing the SEM images, information about the membranes, and input parameters for the FO experiments, and for the fruitful discussions. In addition we thank Emanuele Di Nicolò from Solvay Specialty Polymers for helpful and informative discussions on the microfiltration membranes used as inspiration for the reactive transport experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Iliev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calo, V.M., Iliev, O., Lakdawala, Z. et al. Pore-scale modeling and simulation of flow, transport, and adsorptive or osmotic effects in membranes: the influence of membrane microstructure. Int J Adv Eng Sci Appl Math 7, 2–13 (2015). https://doi.org/10.1007/s12572-015-0132-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-015-0132-3

Keywords

Navigation