Skip to main content

A finite element variational multiscale method for computations of turbulent flow over an aerofoil

Abstract

Numerical simulation of turbulent flows over different aerofoil configurations are presented in this paper. The incompressible fluid flow is described by the time-dependent incompressible Navier–Stokes equations. Further, a finite element variational multiscale method is used to simulate the turbulent flows. Computation over a cylinder and different variants of aerofoils are presented. The obtained numerical results demonstrate the capabilities of variational multiscale methods.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Davidson, P.A.: Turbulence: An Introduction for Scientists and Engineers. Oxford University Press, Oxford (2004)

    Google Scholar 

  2. 2.

    Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  3. 3.

    Chen, H.C., Patel, V.C., Ju, S.: Solutions of Reynolds-averaged Navier–Stokes equations for three-dimensional incompressible flows. J. Comput. Phys. 88, 305–336 (1990)

    Article  MATH  Google Scholar 

  4. 4.

    Fischer, P., Iliescu, T.: Large eddy simulation of turbulent channel flows by the rational les model. Phys. Fluids 15, 3036–3047 (2003)

    Article  Google Scholar 

  5. 5.

    Guermond, J.L., Oden, J.T., Prudhomme, S.: Mathematical perspectives on large eddy simulation models for turbulent flows. J. Math. Fluid Mech. 6, 194–248 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Rogallo, R.S., Moin, P.: Numerical simulation of turbulent flows. Ann. Rev. Fluid Mech 16, 99–137 (1984)

    Article  Google Scholar 

  7. 7.

    Sagaut, P.: Large Eddy Simulation for Incompressible Flows, 2nd edn. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  8. 8.

    Hughes, T.J.R.: Multiscale phenomena: green’s functions, the dirichlet to neumann formulation, subgrid scale models, bubbles and origins of stabilized methods. Comput. Methods Appl. Mech. Eng. 127, 387–401 (1995)

    Article  Google Scholar 

  9. 9.

    Hughes, T.J.R., Feijoo, G.R., Mazzei, L., Quincy, J.B.: The variational multiscale method—a paradigm for computational mechanics. Comput. Methods Appl. Mech. Eng. 166, 3–24 (1998)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Collis, S.S.: Monitoring unresolved scales in multiscale turbulence modelling. Phys. Fluids 13(6), 1800–1806 (2001)

    Article  Google Scholar 

  11. 11.

    Gamnitizer, P., Gravemeier, V., Wall, W.A.: Advances in variational multiscale methods for turbulent flows. In: de Borst, R., Ramm, E. (eds.) Multiscale Methods in Computational Mechanics. Lecture Notes in Applied and Computational Mechanics, pp. 39–52. Springer, Berlin (2011)

    Google Scholar 

  12. 12.

    Gravemeier, V.: The variational multiscale methods for laminar and turbulent incompressible flows. Phd thesis, Institute of Structural Mechanics, University of Stuttgart (2003)

  13. 13.

    John, V.: On large eddy simulation and variational multiscale methods in the numerical simulation of turbulent incompressible flows. Appl. Math. 51(4), 321–353 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    John, V., Kaya, S., Layton, W.J.: A two-level variational multiscale method for convection-dominated convection diffusion equations. Comput. Methods Appl. Mech. Eng. 195, 4594–4603 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    John, V., Layton, W.J.: Subgrid scale eddy viscosity models and variational multiscale methods. Technical report TR-MATH 03–05. University of Pittsburgh (2003)

  16. 16.

    John, V., Kaya, S.: Finite element error analysis of a variational multiscale method for Navier–Stokes equations. Adv. Comp. Math. 28, 43–61 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    John, V.: Large Eddy Simulation of Turbulent Incompressible Flows. Analytical and Numerical Results for a Class of LES Models. Lecture Notes in Computational Science and Engineering. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  18. 18.

    Gamnitizer, P., Gravemeier, V., Wall, W.A.: Time-dependent subgrid scales in residual-based large eddy simulation. Comput. Methods Appl. Mech. Eng. 199, 819–827 (2010)

    Article  Google Scholar 

  19. 19.

    Hughes, T.J.R., Mazzei, L., Jensen, K.E.: Large eddy simulation and variational multiscale methods. Comput. Vis. Sci. 3, 47–59 (2000)

    Article  Google Scholar 

  20. 20.

    Hughes, T.J.R., Oberai, A.A., Mazzei, L.: Large eddy simulation of turbulent channel flows by the variational multiscale method. Phys. Fluids 13(6), 1784–1799 (2001)

    Article  Google Scholar 

  21. 21.

    Gravemeier, V., Wall, W.A., Ramm, E.: A three level finite element method for instationary incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 193, 1323–1366 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  22. 22.

    Gravemeier, V., Wall, W.A., Ramm, E.: Large eddy simulation of turbulent incompressible flows by a three-level finite element method. Int. J. Numer. Methods Fluids 48, 1067–1099 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  23. 23.

    Masud, A., Calderer, R.: A variational multiscale method for incompressible turbulent flows: bubble functions and fine scale fields. Comput. Methods Appl. Mech. Eng. 200, 2577–2593 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  24. 24.

    John, V., Kaya, S.: A finite element variational multiscale method for the Navier–Stokes equation. SIAM J. Sci. Comput. 26(5), 1485–1503 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  25. 25.

    Gravemeier, V.: Scale-seperating operators for variational multiscale large eddy simulation of turbulent flows. J. Comput. Phys. 212, 400–435 (2006)

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sashikumaar Ganesan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pal, B., Ganesan, S. A finite element variational multiscale method for computations of turbulent flow over an aerofoil. Int J Adv Eng Sci Appl Math 7, 14–24 (2015). https://doi.org/10.1007/s12572-015-0126-1

Download citation

Keywords

  • Turbulent flows
  • Incompressible Navier–Stokes
  • Multiscale method
  • Finite elements