Advertisement

Comparison of numerical solutions of the Boltzmann and the Navier–Stokes equations for a moving rigid circular body in a micro scaled cavity

  • Samir Shrestha
  • Sudarshan TiwariEmail author
  • Axel Klar
Article

Abstract

In this paper we present a simulation of a moving rigid circular body suspended in a cavity containing a rarefied gas. The rigid body moves due the flow developed in the gas by continuous uniform motion of one of the wall of the cavity. The flow in the gas is simulated by solving the Boltzmann equation using DSMC particle method. The motion of the rigid body is governed by Newton–Euler equations, where the force and the torque on the rigid body are computed from the momentum transfer of the gas molecules colliding with the rigid body. On the other hand, the motion of rigid body influences the gas flow in its surroundings. The numerical solutions obtained for the dynamics of the rigid body by solving the Boltzmann equation implementing moment and momentum approaches in the DSMC framework are compared. Furthermore, the numerical solutions obtained by solving the Boltzmann equation implementing momentum approach in DSMC framework are compared with the solutions obtained by solving the Navier–Stokes equations using finite pointset method for small as well as large values of Knudsen numbers.

Keywords

Boltzmann equation Navier–Stokes equations Particle methods Force Torque Micro cavity flow Moving rigid body 

Notes

Acknowledgments

This work is partially supported by the German research foundation, DFG grant KL 1105/20-1 and by the DAAD Ph.D. programme MIC.

References

  1. 1.
    Karniadakis, G., Beskok, A., Aluru, N.: Microflows and Nanoflows: Fundamentals and Simulations. Springer, New York (2005)Google Scholar
  2. 2.
    Dechriste’, G., Mieussens, L.: Numerical simulation of micro flows with moving obstacles. J. Phys. 362, 012030 (2012)Google Scholar
  3. 3.
    Gallis, M.A., Rader, D.J., Torczynski, J.R.: Thermophoresis in rarefied gas flows. Aerosol Sci. Technol. 36, 10991117 (2002)CrossRefGoogle Scholar
  4. 4.
    Russo, G., Filbet, F.: Semi-lagrangian schemes applied to moving boundary problems for the BGK model of rarefied gas dynamics. Kinet. Relat. Model. 2, 231–252 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Tsuji, T., Aoki, K.: Moving boundary problems for a rarefied gas: Spatially one dimensional case. J. Comput. Phys. 250, 574–600 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Tiwari, S., Klar, A., Hardt, S., Donkov, A.: Simulation of a moving liquid droplet inside a rarefied gas region. Comput. Fluids 71, 283–296 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Shrestha, S., Tiwari, S., Klar, A., Hardt, S.: Numerical simulation of a moving rigid body in a rarefied gas. J. Comp. Phys. 293, 239–252 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Stefanov, S., Gospodinov, P., Cercignani, C.: Monte carlo simulation and Navier–Stokes finite difference calculation of unsteady-state rarefied gas flows. Phys. Fluids 10, 289 (1998)CrossRefGoogle Scholar
  9. 9.
    Bird, G.A.: Molecular Gas Dynamics and Direct Simulation of Gas Flows. Clarendon, Oxford (1994)Google Scholar
  10. 10.
    Cercignani, C., Illner, R., Pulvirenti, M.: The Mathematical Theory of Dilute Gases. Springer, Berlin (1994)CrossRefzbMATHGoogle Scholar
  11. 11.
    Cerciganani, C.: The Boltzmann Equation and its Applications. Springer, Berlin (1988)CrossRefGoogle Scholar
  12. 12.
    Tiwari, S.: Domain Decomposition in Particle Methods for the Boltzmann and Euler Equation. Shaker Verlag, Aachen (1998)Google Scholar
  13. 13.
    Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-uniform Gases. Cambridge University Press, Cambridge (1970)Google Scholar
  14. 14.
    Grad, H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2(4), 331–407 (1949)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Babovsky, H., Illner, R.: A convergence proof for Nanbu’s simulation method for the Boltzmann equation. SIAM J. Numer. Anal. 26, 45–64 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Neunzert, H., Struckmeier, J.: Particle methods for the Boltzmann equation. Acta Numer. 4, 417–457 (1995)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Tiwari, S., Klar, A., Hardt, S.: A particle–particle hybrid method for kinetic and continuum equations. J. Comput. Phys. 228, 7109–7124 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Tiwari, S.: A LSQ-SPH approach for solving compressible viscous flows. In: Freistueler, H., Warnecke, G. (eds.) Hyperbolic Problems: Theory, Numerics, Application, Volume 141 of International Series of Numerical Mathematics, pp. 901–910. Birkhaeuser, Basel (2001)CrossRefGoogle Scholar
  19. 19.
    Jie, D., Diao, X., Cheong, K.B., Yong, L.K.: Navier–Stokes simulation of gas flow in micro devices. J. Micromech. Microeng. 10, 372–397 (2000)CrossRefzbMATHGoogle Scholar
  20. 20.
    Nie, X., Dollen, G.D., Chen, S.: Lattice–Boltzmann simulations of fluid flows in mems. J. Stat. Phys. 107(1–2), 279–289 (2002)CrossRefzbMATHGoogle Scholar
  21. 21.
    Naris, S., Valougeoris, D.: The Driven cavity flow over the whole range of the Knudsen number. Phys. Fluid 17, 097106 (2005)CrossRefGoogle Scholar
  22. 22.
    Oran, E.S., Oh, C.K., Cybyk, B.Z.: Direct simulation monte carlo: Recent advances and applications. Annu. Rev. Fluid Mech. 30, 403–441 (1998)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Tiwari, S., Kuhnert, J.: Modeling two phase flows with surface tension by finite pointset method (FPM). J. Comput. Appl. Math. 203, 376–386 (2007)MathSciNetCrossRefGoogle Scholar

Copyright information

© Indian Institute of Technology Madras 2015

Authors and Affiliations

  1. 1.Department of Natural Science (Mathematics)Kathmandu UniversityKathmanduNepal
  2. 2.Department of MathematicsUniversity of KaiserslauternKaiserslauternGermany

Personalised recommendations