Thermal characterization, gasification and kinetic studies of different sized Indian coal and char particles

  • K. Jayaraman
  • I. Gökalp


Four different sizes of Indian high ash coal and char are investigated. A simultaneous thermal analyzer and mass spectrometer is used for the characterization of the coal and char samples and the identification of the volatiles evolved during the heating of the sample upto 1,050 °C under combustion cum gasification related conditions. The TG and DTA results are discussed for the investigations under air, oxygen, steam and blended gas atmospheres. The thermogravimetry—mass spectrum profile of the coal provides information on combustion performance (ignition, peak combustion and burnout temperatures) and on chemical changes to the volatile matter (H2, O, CO and CO2), char and minerals. The size effects of the coal and char during pyrolysis, combustion and gasification are discussed. The appropriate temperature ranges to the high ash coal gasification in the steam and steam blended gases are evaluated. The Arrhenius model is applied to determine the kinetic parameters from TG/DTG curves.


High ash coal Pyrolysis Coal gasification Mass spectrometry 



This research work is a part of OPTIMASH project which is financially supported by EU-FP7, European union under the seventh frame work programme.


  1. 1.
    International Energy Agency, Key World Energy Statistics, IEA, 2010. stats/index.asp
  2. 2.
    Couch, G.: Coal to liquids, IEA Clean Coal Centre (2008)Google Scholar
  3. 3.
    BP Statistical review of world energy.: September 2010
  4. 4.
    World Coal Institute.: Coal: liquid fuels, 2006
  5. 5.
    Deutch, J., Moniz, J.: The future of coal: options for a carbon-constrained world. Massachusetts Institute of Technology Interdisciplinary Study (2007)Google Scholar
  6. 6.
    Wall, T., Liu, Y., Spero, C., Elliott, L., Khare, S., Rathnam, R.: An overview on oxyfuel coal combustion state of the art research and technology development. Chem. Eng. Res. Des. 87, 1016–1103 (2009)Google Scholar
  7. 7.
    Nali, M., Corana, F., Montanari, L., Pellegrini, L.: A pyrolysis-gas chromatography/mass spectrometry study on coals. J. Anal. Appl. Pyrolysis 29, 15–23 (1994)CrossRefGoogle Scholar
  8. 8.
    Groenewoud, W.M., de Jong, W.: The thermogravimetric analyser—coupled—Fourier transform infrared/mass spectrometry technique. Thermochim. Acta 286, 341 (1996)CrossRefGoogle Scholar
  9. 9.
    Sonobe, T., Worasuwannarak, N., Pipatmanomai, S.: Synergies in co-pyrolysis of Thai lignite and corncob. Fuel Process. Technol. 89, 1371–1378 (2008)CrossRefGoogle Scholar
  10. 10.
    Worasuwannarak, N., Sonobe, T., Tanthapanichakoon, W.: Pyrolysis behaviors of rich straw, rice husk and corncob by TG–MS technique. J. Anal. Appl. Pyrolysis 78, 265–271 (2007)CrossRefGoogle Scholar
  11. 11.
    Miura, K., Mae, K., Shimada, M., Minami, H.: Analysis of formation rates of sulfur containing gases during the pyrolysis of various coals. Energy Fuels 15, 629–636 (2001)CrossRefGoogle Scholar
  12. 12.
    Kaisersberger, E., Post, E.: Practical aspects for the coupling of gas analytical methods with thermal-analysis instruments. Thermochim. Acta 295, 73–93 (1997)CrossRefGoogle Scholar
  13. 13.
    Van Heek, K.H., Hodek, W.: Structure and pyrolysis behaviour of different coals and relevant model substances. Fuel 73, 886 (1994)CrossRefGoogle Scholar
  14. 14.
    Hu, H., Zhou, Q., Zhu, S., Meyer, B., Krzack, S., Chen, G.: Product distribution and sulfur behavior in coal pyrolysis. Fuel Process. Technol. 85, 849–861 (2004)CrossRefGoogle Scholar
  15. 15.
    Gryglewicz, G.: Effectiveness of high temperature pyrolysis in sulfur removal from coal. Fuel Process. Technol. 46, 217–226 (1996)CrossRefGoogle Scholar
  16. 16.
    Zhou, Q., Hu, H., Liu, Q., Zhu, S., Zhao, R.: Effect of atmosphere on evolution of sulfur containing gases during coal pyrolysis. Energy Fuels 19, 892–897 (2005)CrossRefGoogle Scholar
  17. 17.
    Karaca, S.: Desulfurization of a Turkish lignite at various gas atmospheres by pyrolysis: effect of mineral matter. Fuel 82, 1509–1516 (2003)CrossRefGoogle Scholar
  18. 18.
    Czaplicki, A., Smolka, W.: Sulfur distribution within coal pyrolysis products. Fuel Process. Technol. 55, 1–11 (1998)CrossRefGoogle Scholar
  19. 19.
    Campoy, M., Gomez-Barea, A., Vidali, F.B., Ollero, P.: Air-steam gasification of biomass in a fluidised bed: process optimisation by enriched air. Fuel Process. Technol. 90, 677–685 (2009)CrossRefGoogle Scholar
  20. 20.
    Mahajan, O.P., Akira, T., Nelson, J.R., Walker Jr, P.L.: Differential scanning calorimetry studies on coal and hydrogenation of coals. Fuel. 56, 33–39 (1977)CrossRefGoogle Scholar
  21. 21.
    Morris, R.M.: Effect of particle size and temperature on volatiles produced from coal by slow pyrolysis. Fuel 69, 776–779 (1990)CrossRefGoogle Scholar
  22. 22.
    Jayaweera, S.A.A., Moss, J.H., Thwaites, M.W.: The effect of particle size on the combustion of weardale coal. Thermochim. Acta 152, 215–225 (1989)CrossRefGoogle Scholar
  23. 23.
    Ciuryla, V.T., Weimer, R.F., Bivans, D.A., Motika, S.A.: Ambient-pressure thermogravimetric characterization of four different coals and their chars. Fuel 58, 748–754 (1979)CrossRefGoogle Scholar
  24. 24.
    Kök, M.V., Esber, E., Ozbas, O., Hicyilmaz, K.C.: Effect of particle size on coal pyrolysis. J. Anal. Appl. Pyrolysis 45, 103–110 (1998)CrossRefGoogle Scholar
  25. 25.
    Hanson, S., Patrick, J.W., Walker, A.: The effect of coal particle size on pyrolysis and steam gasification. Fuel 81, 531–537 (2002)CrossRefGoogle Scholar
  26. 26.
    Arenillas, A., Rubiera, F., Pis, J.J.: Simultaneous thermogravimetric–mass spectrometric study on the pyrolysis behaviour of different rank coals. J. Anal. Appl. Pyrolysis. 50, 31–46 (1999)CrossRefGoogle Scholar
  27. 27.
    Arenillas, A., Rubiera, F., Pevida, C., Pis, J.J.: Thermogravimetric—mass spectrometric study on the evolution of nitrogen compounds during coal devolatilisation. J. Anal. Appl. Pyrolysis 65, 57–70 (2002)CrossRefGoogle Scholar
  28. 28.
    Seo, D.K., Parka, S.S., Kim, Y.T., Hwang, J., Tae-U, Yu.: Study of coal pyrolysis by thermo-gravimetric analysis (TGA) and concentration measurements of the evolved species. J. Anal. Appl. Pyrolysis 92, 209–216 (2011)CrossRefGoogle Scholar
  29. 29.
    Solomon, P.R., Serio, M.A., Suuberg, E.M.: Coal pyrolysis: experiments, kinetic rates and mechanisms. Prog. Energy Combust. Sci. 18, 133–220 (1992)CrossRefGoogle Scholar
  30. 30.
    Kök, M.V.: Temperature-controlled combustion and kinetics of different rank coal samples. J. Therm. Anal. Calorim. 79, 175–180 (2005)CrossRefGoogle Scholar
  31. 31.
    Wang, C., Yongbo, Du, Che, D.: Reactivities of coals and synthetic model coal under oxy-fuel conditions. Thermochim. Acta 553, 8–15 (2013)CrossRefGoogle Scholar
  32. 32.
    Comming, J.W.: Reactivity assessment of coals via a weighted mean activation energy. Fuel 631, 1436 (1984)CrossRefGoogle Scholar
  33. 33.
    Jiménez, F., Mondragón, F., López, D.: Structural changes in coal chars after pressurized pyrolysis. J. Anal. Appl Pyrolysis 95, 164–170 (2012)CrossRefGoogle Scholar
  34. 34.
    Qian, W., Xie, Q., Huang, Y., Dang, J., Sun, K., Yang, Q., Wang, J.: Combustion characteristics of semicokes derived from pyrolysis of low rank bituminous coal. Int. J. Min. Sci. Technol. 22, 645–650 (2012)CrossRefGoogle Scholar
  35. 35.
    Serio, M.A., Hamblen, D.G., Markham, J.R., Solomon, P.R.: Kinetics of volatile product evolution in coal. pyrolysis: experiment and theory. Energy Fuels 1, 138–152 (1987)CrossRefGoogle Scholar
  36. 36.
    Arenillas, A., Rubiera, F., Pis, J.J., Cuesta, M.J., Iglesias, M.J., Jiménez, A., Suárez-Ruiz, I.: Thermal behavior during the pyrolysis of low rank perhydrous coals. J. Anal. Appl. Pyrolysis 68–69, 371–385 (2003)CrossRefGoogle Scholar
  37. 37.
    Wilson.: Method for increasing steam decomposition in a coal gasification process US patent, No. 4,786,291 (1998)Google Scholar
  38. 38.
    Ming-gao, Y., Yan-min, Z., Chang, L.: Thermal analysis of kinetics of coal oxidation. Procedia Earth Planet. Sci. 1, 341–346 (2009)CrossRefGoogle Scholar

Copyright information

© Indian Institute of Technology Madras 2014

Authors and Affiliations

  1. 1.ICARE-CNRSOrleansFrnace

Personalised recommendations