Grain boundary engineering in alloy D9 through thermo-mechanical processing: influence of process variables and aspects of micro-mechanisms


By employing low-strain one-step thermo-mechanical processing (OTMP) and iterative thermo-mechanical processing (ITMP) we developed grain boundary engineered microstructure in a Ti-modified austenitic stainless steel (alloy D9). In OTMP, small amount of strain (0, 5, 10 and 15%) was imparted on solution annealed sample and subsequently annealed at various temperatures (1173–1273 K) for different time periods (0.5, 1 and 2 h). A pre-strain of 10–15% followed by annealing at 1273 K for 0.5–2 h has been found to be the suitable OTMP to increase the fraction of Σ3n boundaries significantly. ITMP employing 10% thickness reduction followed by annealing at 1273 K for 0.5 h revealed fluctuations in the evolution of Σ3s. ITMP employing 2.5% thickness reduction per iteration, on the other hand, resulted in continuous increase in Σ3 boundary fraction and a moderate increase in Σ9 and Σ27 boundaries. The role of Σ3 boundaries on the mechanical properties of GBE processed specimen was studied by correlating the hardness with grain size evaluated with and without considering twin boundaries. The paper also discusses the micro-mechanisms involved during low-strain GBE processes in austenitic stainless steel.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    The hardness was measured with a FIE VM 50 Vickers hardness tester with 5 kg load with a dwell time of 15 s dwell time.


  1. 1.

    Damcott, D.L., Allen, T.R., Was, G.S.: Dependence of radiation-induced segregation on dose, temperature and alloy composition in austenitic alloys. J. Nucl. Mater. 225, 97–107 (1995)

    Article  Google Scholar 

  2. 2.

    Gupta, G., Jiao, Z., Ham, A.N., Busby, J.T., Was, G.S.: Microstructural evolution of proton irradiated T91. J. Nucl. Mater. 351, 162–173 (2006)

    Article  Google Scholar 

  3. 3.

    Allen, T.R., Was, G.S.: Modeling radiation-induced segregation in austenitic Fe–Cr–Ni alloys. Acta Mater. 46, 3679–3691 (1998)

    Article  Google Scholar 

  4. 4.

    Allen, T.R., Busby, J.T., Was, G.S., Kenik, E.A.: On the mechanism of radiation-induced segregation in austenitic Fe–Cr–Ni alloys. J. Nucl. Mater. 255, 44–58 (1998)

    Article  Google Scholar 

  5. 5.

    Watanabe, S., Takamatsu, Y., Sakaguchi, N., Takahashi, H.: Sink effect of grain boundary on radiation-induced segregation in austenitic stainless steel. J. Nucl. Mater. 283–287, 152–156 (2000)

    Article  Google Scholar 

  6. 6.

    Sakaguchi, N., Watanabe, S., Takahashi, H., Faulkner, R.G.: A multi-scale approach to radiation-induced segregation at various grain boundaries. J. Nucl. Mater. 329–333, 1166–1169 (2004)

    Article  Google Scholar 

  7. 7.

    Watanabe, T.: An approach to grain boundary design for strong and ductile polycrystals. Res. Mech. 11, 47–84 (1984)

    Google Scholar 

  8. 8.

    Palumbo, G., King, P.J., Aust, K.T., Erb, U., Lichtenberger, P.C.: Grain boundary design and control for intergranular stress-corrosion resistance. Scr. Metall. Mater. 25, 1775–1780 (1991)

    Article  Google Scholar 

  9. 9.

    Kumar, M., Schwartz, A.J., King, W.E.: Microstructural evolution during grain boundary engineering of low to medium stacking fault energy fcc materials. Acta Mater. 50, 2599–2612 (2002)

    Article  Google Scholar 

  10. 10.

    Krupp, U.: Improving the resistance to intergranular cracking and corrosion at elevated temperatures by grain-boundary-engineering-type processing. J. Mater. Sci. 43, 3908–3916 (2008)

    Article  Google Scholar 

  11. 11.

    Bechtle, S., Kumar, M., Somerday, B.P., Launey, M.E., Ritchie, R.O.: Grain-boundary engineering markedly reduces susceptibility to intergranular hydrogen embrittlement in metallic materials. Acta Mater. 57, 4148–4157 (2009)

    Article  Google Scholar 

  12. 12.

    Tan, L., Sridharan, K., Allen, T.R., Nanstad, R.K., McClintock, D.A.: Microstructure tailoring for property improvements by grain boundary engineering. J. Nucl. Mater. 374, 270–280 (2008)

    Article  Google Scholar 

  13. 13.

    Watanabe, T.: Grain boundary design and control for high temperature materials. Mater. Sci. Eng. A. 166, 11–28 (1993)

    Article  Google Scholar 

  14. 14.

    Krupp, U., Wagenhuber, P.E.-G., Kane, W.M., McMahon Jr, C.J.: Improving resistance to dynamic embrittlement and intergranular oxidation of nickel based superalloys by grain boundary engineering type processing. Mater. Sci. Technol. 21, 1247–1254 (2005)

    Article  Google Scholar 

  15. 15.

    Reed, B.W., Kumar, M., Minich, R.W., Rudd, R.E.: Fracture roughness scaling and its correlation with grain boundary network structure. Acta Mater. 56, 3278–3289 (2008)

    Article  Google Scholar 

  16. 16.

    Kim, C.S., Hu, Y., Rohrer, G.S., Randle, V.: Five-parameter grain boundary distribution in grain boundary engineered brass. Scr. Mater. 52, 633–637 (2005)

    Article  Google Scholar 

  17. 17.

    Watanabe, T., Fujii, H., Oikawa, H., Arai, K.I.: Grain boundaries in rapidly solidified and annealed Fe-6.5 mass% Si polycrystalline ribbons with high ductility. Acta Metall. 37, 941–952 (1989)

    Article  Google Scholar 

  18. 18.

    Molodov, D.A., Konijnenberg, P.J.: Grain boundary and grain structure control through application of a high magnetic field. Scr. Mater. 54, 977–981 (2006)

    Article  Google Scholar 

  19. 19.

    Winning, M.: Grain boundary engineering by application of mechanical stresses. Scr. Mater. 54, 987–992 (2006)

    Article  Google Scholar 

  20. 20.

    Yang, S., Wang, Z.J., Kokawa, H., Sato, Y.S.: Grain boundary engineering of 304 austenitic stainless steel by laser surface melting and annealing. J. Mater. Sci. 42, 847–853 (2007)

    Article  Google Scholar 

  21. 21.

    Randle, V., Jones, R.: Grain boundary plane distributions and single-step versus multiple-step grain boundary engineering. Mater. Sci. Eng. A 524, 134–142 (2009)

    Article  Google Scholar 

  22. 22.

    Schwartz, A.J., King, W.E., Kumar, M.: Influence of processing method on the network of grain boundaries. Scr. Mater. 54, 963–968 (2006)

    Article  Google Scholar 

  23. 23.

    Jones, R., Randle, V., Engelberg, D., Marrow, T.J.: Five-parameter grain boundary analysis of a grain boundary-engineered austenitic stainless steel. J. Microsci. 233, 417–422 (2009)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Davies, P., Randle, V.: Grain boundary engineering and the role of the interfacial plane. Mater. Sci. Technol. 17, 615–626 (2001)

    Google Scholar 

  25. 25.

    Randle, V.: Twinning-related grain boundary engineering. Acta Mater. 52, 4067–4081 (2004)

    Article  Google Scholar 

  26. 26.

    Michiuchi, M., Kokawa, H., Wang, Z.J., Sato, Y.S., Sakai, K.: Twin-induced grain boundary engineering for 316 austenitic stainless steel. Acta Mater. 54, 5179–5184 (2006)

    Article  Google Scholar 

  27. 27.

    Fang, X., Zhang, K., Guo, H., Wang, W., Zhou, B.: Twin-induced grain boundary engineering in 304 stainless steel. Mater. Sci. Eng. A 487, 7–13 (2008)

    Article  Google Scholar 

  28. 28.

    Engelberg, D.L., Humphreys, F.J., Marrow, T.J.: The influence of low-strain thermo-mechanical processing on grain boundary network characteristics in type 304 austenitic stainless steel. J. Microsci. 230, 435–444 (2008)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Mandal, S., Sivaprasad, P.V., Raj, B., Subramanya Sarma, V.S.: Grain boundary microstructural control through thermo-mechanical processing in a titanium modified austenitic stainless steel. Metal. Mater. Trans. A 39, 3298–3307 (2008)

    Article  Google Scholar 

  30. 30.

    Mandal, S., Bhaduri, A.K., Sarma, V.S.: Studies on twinning and grain boundary character distribution during anomalous grain growth in a Ti-modified austenitic stainless steel. Mater. Sci. Eng. A 515, 134–140 (2009)

    Article  Google Scholar 

  31. 31.

    Mandal, S., Bhaduri, A.K., Sarma, V.S.: One-step and iterative thermo-mechanical treatments to enhance Σ3n boundaries in a Ti-modified austenitic stainless steel. J. Mater. Sci. 46, 275–284 (2011)

    Article  Google Scholar 

  32. 32.

    Brandon, D.G.: The structure of high-angle grain boundaries. Acta Metall. 14, 1479–1484 (1966)

    Article  Google Scholar 

  33. 33.

    Lim, L.C., Raj, R.: On the distribution of Σ for grain boundaries in polycrystalline nickel prepared by strain-annealing technique. Acta Metall. 32, 1177–1181 (1984)

    Article  Google Scholar 

  34. 34.

    Randle, V., Owen, G.: Mechanisms of grain boundary engineering. Acta Mater. 54, 1777–1783 (2006)

    Article  Google Scholar 

  35. 35.

    Randle, V.: Mechanism of twinning-induced grain boundary engineering in low stacking-fault energy materials. Acta Mater. 47, 4187–4196 (1999)

    Article  Google Scholar 

  36. 36.

    Jorge-Badiola, D., Iza-Mendia, A., Gutierrez, I.: Evaluation of intragranular misorientation parameters measured by EBSD in a hot worked austenitic stainless steel. J. Microsci 228, 373–383 (2007)

    MathSciNet  Article  Google Scholar 

  37. 37.

    Owen, G., Randle, V.: On the role of iterative processing in grain boundary engineering. Scr. Mater. 55, 959–962 (2006)

    Article  Google Scholar 

  38. 38.

    Wang, W., Guo, H.: Effects of thermo-mechanical iterations on the grain boundary character distribution of Pb–Ca–Sn–Al alloy. Mater. Sci. Eng. A 445–446, 155–162 (2007)

    Google Scholar 

  39. 39.

    Randle, V., Coleman, M.: A study of low-strain and medium-strain grain boundary engineering. Acta Mater. 57, 3410–3421 (2009)

    Article  Google Scholar 

  40. 40.

    Randle, V., Davies, H.: Evolution of microstructure and properties in Alpha-Brass after Iterative processing. Metall. Mater. Trans. A 33, 1853–1857 (2002)

    Article  Google Scholar 

  41. 41.

    Randle, V.: Grain boundary engineering: an overview after 25 years. Mater. Sci. Technol. 26, 253–261 (2010)

    Article  Google Scholar 

  42. 42.

    Lehockey, E.M., Brennenstuhl, A.M., Thompson, I.: On the relationship between grain boundary connectivity, coincident site lattice boundaries, and intergranular stress corrosion cracking. Corros. Sci. 46, 2383–2404 (2004)

    Article  Google Scholar 

  43. 43.

    Alexandreanu, B., Sencer, B.H., Thaveeprungsriporn, V., Was, G.S.: The effect of grain boundary character distribution on the high temperature deformation behavior of Ni–16Cr–9Fe alloys. Acta Mater. 51, 3831–3848 (2003)

    Article  Google Scholar 

  44. 44.

    Lu, L., Shen, Y., Chen, X., Qian, L., Lu, K.: Ultrahigh strength and high electrical conductivity in copper. Science 304, 422–426 (2004)

    Article  Google Scholar 

  45. 45.

    Karthikeyan, T., Thomas Paul, V., Mishra, S.K., Saroja, S., Vijayalakshmi, M., Samajdar, I.: Effect of thermo-mechanical treatment on the grain boundary character distribution in a 9Cr–1Mo ferritic steel. Metall. Mater.Trans. A 40, 2030–2032 (2009)

    Article  Google Scholar 

  46. 46.

    McLean, D.: Grain boundaries in metals, p. 34. Oxford University Press, London (1957)

    Google Scholar 

  47. 47.

    Aleshin, A.N., Aristov, V.Yu., Bokshtein, B.S., Shvindlerman, L.S.: Kinetic properties of <111> tilt boundaries in aluminium. Phys. Status Solidi A 45, 359–366 (1978)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to V. Subramanya Sarma.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mandal, S., Bhaduri, A.K. & Subramanya Sarma, V. Grain boundary engineering in alloy D9 through thermo-mechanical processing: influence of process variables and aspects of micro-mechanisms. Int J Adv Eng Sci Appl Math 2, 149–160 (2010).

Download citation


  • Austenitic stainless steel
  • Grain boundary engineering
  • One-step and iterative thermo-mechanical processing
  • Twinning
  • Mechanisms