Skip to main content
Log in

Abstract

Masonry is extensively used in buildings as structural and cladding elements. With the increase in demand for understanding the performance of all building elements, experts from various fields are seeking to include masonry as a sub-system of their respective major models. It is imperative that these models account for the true behaviour of masonry dictated by the presence of mortar joints acting as planes of weakness, the interaction between the grout and masonry shell as well as the grouted cores and unreinforced masonry in various forms of masonry design. The purpose of this article is, therefore, to provide a state-of-the-art review on the modelling of masonry in the context of the fundamental behaviour of various forms of masonry to loading, with particular attention to shear loading. It is shown that the modelling methods and the parameters must be carefully chosen as one method cannot be claimed suitable for all circumstances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. ABAQUS: Theory manual. Hibbit, Karlson & Sorenson, Inc, Providence (2005)

    Google Scholar 

  2. AS3700: Australian Standard—Masonry Structures. Standards Australia International, Sydney (2001)

    Google Scholar 

  3. Assa, B., Dhanasekar, M.: A layered line element for the flexural analysis of cyclically loaded reinforced concrete beam-columns. Comput. Struct. 78, 517–527 (2000)

    Article  Google Scholar 

  4. Assa, B., Dhanasekar, M.: The significance of transverse steel reinforcement to the behaviour of RC columns. In: Proc. 17th Australasian Conf on Mech of Structures and Materials, Balkema, pp. 139–144 (2002)

  5. Assa, B., Dhanasekar, M.: A numerical model for the flexural analysis of short reinforced masonry columns including bond-slip. Comput. Struct. 80(5), 547–558 (2002)

    Article  Google Scholar 

  6. Bazant, Z.P., Planas, J.: Fracture and Size Effect in Concrete and Other Quasi Brittle Materials. CRC press, Boca Raton (1997). ISBN: 084938284X

  7. Bosiljkov, V.: Micro vs. macro reinforcement of brick masonry. Mater. Struct. 39, 235–245 (2006)

    Article  Google Scholar 

  8. BS EN1996. Eurocode 6: Design of masonry structures. British adopted European standard (2005). ISBN: 9780580687372

  9. BS5628: Structural Use of Masonry: Part-1 Unreinforced Masonry. British Standards Institution, London (1985)

    Google Scholar 

  10. BS5628: Structural Use of Masonry: Part-2 Reinforced Masonry. British Standards Institution, London (1985)

    Google Scholar 

  11. CSA-S304.1. Design of Masonry Structures. Canadian Standards Association (2004). ISBN: 1-55397-402-6

  12. DeJong, M.J.: Seismic assessment strategies for masonry structures. PhD thesis. Massachusetts Institute of Technology, Cambridge, MA (2009)

  13. Dhanasekar M. The performance of brick masonry subjected to inplane loading. PhD thesis, University of Newcastle, Ourimbah, Australia (1985)

  14. Dhanasekar, M.: Requirement of high performance grout for the partially reinforced masonry. In: Proc. The First USA–Australia Workshop on High Performance Concrete, Sydney, pp. 341–355 (1997)

  15. Dhanasekar, M.: Evaluation of cyclic M-κ relations of reinforced masonry. In: 16 ACMSM, Sydney, pp. 607–612 (1999)

  16. Dhanasekar, M., On the shear capacity equation formula in AS3700, In: Proc Australasian Structural Engineering Conference, Gold Coast, vol. 2, pp. 555–562 (2001)

  17. Dhanasekar, M.: On the confined masonry. J Inst Eng (India) V(CE), 26–30 (2004)

  18. Dhanasekar, M., daPorto, F.: Review of the thin bed technology for masonry construction, Paper B.7-3. In: Proc. 11th Canadian Masonry Symposium, Toronto, (2009). ISBN 978-0-9737209-2-1

  19. Dhanasekar, M., Haider, W.: An explicit finite element modelling for the analysis of masonry shear walls containing reinforcement. In: Proc. Australasian Conf. Mech of Mat and Struct, Christchurch, pp. 967–973 (2006). ISBN 13 978 0 415 42692 3

  20. Dhanasekar, M., Haider, W.: An explicit finite element model for masonry. Comput. Struct. 86, 15–26 (2008)

    Article  Google Scholar 

  21. Dhanasekar, M., Kelly, W.: Shear resistance of masonry joints containing damp proof courses. In: Proc. 7NAMC, Notre Dame, IN, pp. 666–676 (1996)

  22. Dhanasekar, M., Shrive, N.G.: Strength and stiffness of confined and unconfined concrete masonry. ACI. Struct. J. 99(6), 819–826 (2002)

    Google Scholar 

  23. Dhanasekar, M., Wong, K.: Evaluation of shear capacity equation for masonry beams without web reinforcement. In: Proc. 6th Australasian Masonry Conference, Adelaide, pp. 115–124 (2001)

  24. Dhanasekar, M., Xiao, Q.Z.: A 2D element for 3D analysis of masonry prisms, In: Proc. 6th Australasian Masonry Conference, Adelaide, pp. 125–134 (2001)

  25. Dhanasekar, M., Xiao, Q.Z.: A plane hybrid stress element method for 3D hollow bodies of uniform thickness. Comput. Struct. 79(5), 483–497 (2001)

    Article  Google Scholar 

  26. Dhanasekar, M., Page, A.W., Kleeman, P.W.: The elastic properties of brick masonry. Int. J. Mason. Constr. 2(4), 155–160 (1982)

    Google Scholar 

  27. Dhanasekar, M., Page, A.W., Kleeman, P.W.: A finite element model for the inplane behaviour of brick masonry. In: Proc. 9th Australasian Conference on Mechanics of Structures and Materials, Sydney, pp. 262–267 (1984)

  28. Dhanasekar, M., Page, A.W., Kleeman, P.W.: Biaxial stress–strain relations for brick masonry. J. Struct. Eng. 111(5), 1085–1100 (1985)

    Article  Google Scholar 

  29. Dhanasekar, M., Kleeman, P.W., Page, A.W.: The failure of brick masonry under biaxial stress. In: Proc Inst of Engineers, Part 2, London, vol. 72, pp. 295–313 (1985)

  30. Dhanasekar, M., Loov, R., Shrive, N.G.: Stress–strain relations for grouted concrete masonry under cyclic compression. In: Proc 15th Australasian Conference on Mechanics of Structures and Materials, Melbourne, Balkema, pp. 663–668 (1997)

  31. Dhanasekar, M., Loov, R.E., McCoullough, D., Shrive, N.G.: Stress–strain relations for hollow concrete masonry under cyclic compression. In: Proc. 11th International Brick & Block Masonry Conference, Shanghai, pp. 1269–1278 (1997)

  32. Dhanasekar, M., Maes, P., Shrive, N.G.: Response of the cores of partially reinforced masonry to cyclic flexure. In: Proc. 11th Int. Brick & Block Masonry Conference, Shanghai, pp. 239–248 (1997)

  33. Dhanasekar, M., Shrive, N.G., Page, A.W., Haider, W.: Wide spaced reinforced masonry shearwalls. In: Bull, j (ed.) Computer Analysis and Design of Masonry Structures, Saxe-Coburg Publishers, Edinburgh (2010). ISBN: 978-1-874672-44-9

  34. Dickie, J.E., Lissel, S.L. Comparison of inplane masonry shear models. In: Proc. 11th Canadian Masonry Symposium, Toronto (2009)

  35. Drysdale, R.G., Hamid, A.A.: Capacity of concrete block masonry prisms under eccentric compressive loading. ACI. J. 80, 102–108 (1983)

    Google Scholar 

  36. Drysdale, R.G., Hamid, A.A.: Masonry Structures: Behaviour and Design. Canada Masonry Design Centre (2005). ISBN: 0-9737209-0-5

  37. FEMA 307: Evaluation of earthquake damaged concrete and masonry wall buildings, Washington, DC, http://www.fema.gov/library/viewRecord.do?id=1652 (1998)

  38. Feng, M.L., Dhanasekar, M.: Improving out-of-plane fields of a quasi-3D element using Fourier series expansion. Int. J. Struct. Eng. Mech. 13(5), 491–504 (2002)

    Google Scholar 

  39. Franch, K.A.G., Morbelli, G.M.G., Inostroza, M.A.A., Gori, R.E.: A seismic vulnerability index for confined masonry shear wall buildings and a relationship with damage. J. Eng. Struct. 30, 2605–2612 (2008)

    Article  Google Scholar 

  40. Gambarotta, L., Lagomarsino, S.: Damage models for the seismic response of brick masonry shear walls. Part I: the mortar joint model and its applications. J. Earthq. Eng. Struct. Dyn. 26, 423–439 (1997)

    Article  Google Scholar 

  41. Gambarotta, L., Lagomarsino, S.: Damage models for the seismic response of brick masonry shear walls. Part II: the continuum model and its applications. J. Earthq. Eng. Struct. Dyn. 26, 441–462 (1997)

    Article  Google Scholar 

  42. Haider, W., Dhanasekar, M.: Experimental study of monotonically loaded wide spaced reinforced masonry walls. Aust. J. Struct. Eng. 5(2), 101–118 (2004)

    Google Scholar 

  43. Hatzinikolas, M., Longworth, J., Warwaruk, J.: The effect of joint reinforcement on the vertical load carrying capacity of hollow concrete block masonry, Structural Engineering Report, Alberta Masonry Institute (1978)

  44. Hellweg, H.B., Crisfield, M.A.: A new arc-length method for handling sharp snap-backs. Comput. Struct. 66(5), 705–709 (1998)

    Article  MATH  Google Scholar 

  45. Karapitta, L., Mouzakis, H., Carydis, P.: Explicit finite-element analysis for the in-plane cyclic behaviour of unreinforced masonry structures, Earthq. Eng. Struct. Dyn. doi:10.1002/eqe.1014 (2010)

  46. Karbassi, A., Nollet, M.J.: Application of the applied element method to the seismic vulnerability evaluation of existing buildings, In: CSCE Annual Conference, Quebec (2008)

  47. Kumar, M, Dhanasekar, M.: Effect of lateral reinforcement detailing on the strength and stiffness of reinforced clay block masonry. In: Proc 5th East Asia Pacific Conference on Structural Engineering and Construction, vol. 1, pp. 1006–1010 (1995)

  48. Kumar, M., Dhanasekar, M.: Response of slender reinforced masonry columns to eccentric compression. In: Proc. 4th Australasian Masonry Conference, Sydney, pp. 189–198 (1995)

  49. Kumar, M.: Development of reinforced clay block masonry columns subjected to concentric and eccentric compression. Master of Engineering Thesis, Central Queensland University, Australia, (1995)

  50. Lestuzzi, P., Belmouden, Y., Trueb, M.: Nonlinear seismic behaviour of structures with limited hysteretic energy dissipation capacity. Bull. Earthq. Eng. 5, 549–569 (2007). Springer

    Article  Google Scholar 

  51. Lotfi, H.R., Shing, P.B.: An appraisal of smeared crack models for masonry shear wall analysis. Comput. Struct. 41(3), 413–425 (1991)

    Article  Google Scholar 

  52. Lourenco, P.B.: Computational strategies for masonry structures. PhD thesis, Delft University, Delft, The Netherlands, (1996)

  53. Luciano, R., Sacco, E.: A damage model for masonry structures. Eur. J. Mech. Solids 17(2), 285–303 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  54. Massarat, T.J.: Multiscale modelling of damage in masonry structures. PhD Thesis, Technical university of Eindhoven, Eindhoven, The Netherlands (2003)

  55. Mosler, J., Meschke, G.: Embedded crack vs smeared crack models: a comparison of element wise discontinuous crack path approaches with emphasis on mesh bias. Comput. Methods Appl. Mech. Eng. 193, 3351–3375 (2004)

    Article  MATH  Google Scholar 

  56. MSJC: Building code requirement for masonry structures. ACI530/ASCE 5/TMS 402, USA (2008)

    Google Scholar 

  57. Page, A.W.: Finite element model for masonry. J. Struct Div. 104(ST8), 1267–1285 (1978)

    MathSciNet  Google Scholar 

  58. Priestley, M.J.N., Elder, D.M.: Stress-strain curves for unconfined and confined concrete masonry. ACI J. 80(3), 192–201 (1983)

    Google Scholar 

  59. Qin, Q.H.: The Trefftz Finite and Boundary Element Method. WIT Press, Southampton (2000)

    MATH  Google Scholar 

  60. Ramamurthy, K., Ganesan, T.P.: Analysis of concrete hollow block masonry prisms under eccentric compression. Mag. Concr. Res. 45(163), 147–153 (1993)

    Article  Google Scholar 

  61. Reda-Taha, M.M., Xiao, X., Yi, J., Shrive, N.G.: Evaluation of flexural fracture toughness for quasi-brittle structural materials using a simple test method. Can. J. Civ. Eng. 29, 567–575 (2002)

    Article  Google Scholar 

  62. Reddy, B.V.V., Vyas, U.V.: Influence of shear bond strength on compressive strength and stress–strain characteristics of masonry. Mater. Struct. 41, 1607–1712 (2008)

    Google Scholar 

  63. Roca, P.: Assessment of masonry shear walls by simple equilibrium models. Construct. Build. Mater. 20, 229–238 (2006)

    Article  Google Scholar 

  64. Rots, J.G.: Numerical simulation of cracking in structural masonry. Heron 36(2), 49–63 (1991)

    Google Scholar 

  65. Sarangapani, G., Reddy, B.V.V., Jagdish, K.S.: Brick mortar bond and masonry compressive strength. J. Mater. Civ. Eng. 17(2), 229–237 (2005)

    Article  Google Scholar 

  66. Sayed-Ahmed, E.Y., Shrive, N.G.: Numerical analysis of face-shell bedded hollow masonry walls subjected to concentrated loads. Can. J. Civ. Eng. 22, 802–818 (1995)

    Article  Google Scholar 

  67. Schulz, A.E.: Minimum horizontal reinforcement requirements for seismic design of masonry shear walls. Mason. Soc. J. 14(1), 49–64 (2006)

    Google Scholar 

  68. Scrivener, J.C., Baker, L.: Factors influencing grouted masonry prism compressive strength. In: Proc. 8th IB2MaC, Dublin, pp. 875–883 (1986)

  69. Shedid, M.T., El_Dhakhakhni, W.W., Drysdale, R.G.: Analysis of seismic response of fully grouted reinforced concrete masonry shear walls. In: Proc. 14th World Conference on Earthquake Engineering, Beijing, (2008)

  70. Tena-Colunga, A., Cano-Licona, J.: Simplified method for the seismic analysis of masonry shear-wall buildings. J. Struct. Eng. 136, 5 (2010)

    Article  Google Scholar 

  71. Tong, P., Pian, T.T.H., Lasy, S.L.: A hybrid-element approach to crack problems in plane elasticity. Int. J. Numeric. Methods Eng. 7, 297–308 (1973)

    Article  MATH  Google Scholar 

  72. Van Zijl, G.P.A.G.: Modelling masonry shear-compression: role of dilatancy highlighted. J. Eng. Mech. 130(11), 1289–1296 (2004)

    Article  Google Scholar 

  73. Vecchio, F.J.: Disturbed stress field model for reinforced concrete: formulation. J. Struct. Eng. 126(9), 1070–1077 (2000)

    Article  Google Scholar 

  74. Vecchio, F.J., Collins, M.P.: The modified compression field theory for reinforced concrete elements subjected to shear. ACI Struct. J. 83, 219–231(1986)

    Google Scholar 

  75. Vermeltfoort, A.T.: Brick mortar interaction in masonry under compression. PhD thesis, Eindhoven University of Technology, Eindhoven, The Netherlands (2005). ISBN: 90-6814-582-7

  76. Wang, K.Y., Dhanasekar, M., Qin, Q.H., Kang, Y.L.: Contact analysis using Trefftz and interface finite elements. J. Comput. Assist. Mech. Eng. Sci. 13(3), 457–471 (2006)

    MATH  Google Scholar 

  77. Xiao, Q.Z., Dhanasekar, M. Plane hybrid stress element for 3D problems. In: Proc. 5th International Conf on Computational Structures Technology, Belgium, pp. 147–158 (2000)

  78. Xiao, Q.Z., Dhanasekar, M.: Coupling of FE and EFG using collocation approach. Int. J. Adv. Eng. Softw. 33(710), 507–516 (2002)

    Article  MATH  Google Scholar 

  79. Zhuge, Y.: Distinct element modelling of URM under seismic loads with and without cable retrofitting. Trans. Tianjin Univ. 14, 471–475 (2008). doi:10.1007/s12209-008-0080-0

    Article  Google Scholar 

  80. Zhuge, Y., Thambiratnam, D., Corderoy, J.: Nonlinear dynamic analysis of unreinforced masonry. J. Struct. Eng. 124(3), 270–277 (1998)

    Google Scholar 

Download references

Acknowledgments

The author acknowledges a range of undergraduate and research students who have contributed to the development of the ideas/data reported in the article. Recent deliberations with Professors Page (Newcastle, NSW), Shrive (Calgary, Canada) and Drysdale (McMaster, Canada) as well as industry partners Alan Pearson (CMAA) and Wayne Holt (AdBri Masonry) are also fondly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Dhanasekar.

Additional information

This article is prepared on invitation from the editors Professors Muralikrishnan and Ramamurthy, IIT Madras, India.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhanasekar, M. Review of modelling of masonry shear. Int J Adv Eng Sci Appl Math 2, 106–118 (2010). https://doi.org/10.1007/s12572-011-0022-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-011-0022-2

Keywords

Navigation