Beyond subsistence: the aggregate contribution of campesinos to the supply and conservation of native maize across Mexico

Abstract

Mexico is the center of domestication and a center for diversity of maize. Area planted with maize is the country’s largest agricultural land use, mostly planted by smallholder family farmers known as campesinos. They generally plant native varieties, saving and sharing seed by and among themselves, enabling the evolutionary processes that sustain and generate crop genetic diversity to continue today. Campesinos have been viewed as largely subsistence farmers generating limited maize surpluses. Here, we show that subsistence production is insufficient for explaining the quantity of maize they produce and the extent of the area they plant across Mexico. Our hypothesis is that beyond supplying their own consumption needs, campesinos collectively produce maize to respond to the demand of non-maize producing local consumers. We quantify the extent of subsistence versus surplus production among campesinos, showing that they produce more maize than would be needed to feed themselves and generate substantial surpluses. We test statistically the association between the area campesinos plant with maize across the country with socioeconomic variables that link their production to the demand by other consumers, and examine the implications of the results for the supply and conservation of native maize in the country. Our results suggest that maize trading linking campesinos to other consumers may be important and widespread, contributing to create additional incentives beyond self-consumption to plant native varieties from saved seed. We conclude that there are important opportunities for maintaining maize evolution under domestication at large scale by strengthening local maize markets.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Notes

  1. 1.

    A government program providing a subsidy per hectare of land cultivated to farmers who were originally subscribed at the onset of North American Free Trade Agreement (NAFTA). The data was originally retrieved from http://www.sagarpa.gob.mx/agricultura/Programas/proagro/procampo/Beneficiarios/Paginas/2010.aspx. However, this link it is no longer active. The downloaded data used in our previous study is available at https://doi.org/10.5061/dryad.79q870b (Bellon et al., 2018b Accessed September 29, 2020.

  2. 2.

    SIAP is the government body that compiles and reports on official agricultural statistics. The reported data is based on field information collected and validated at the municipality level according to SIAP’s Technical Standard for the Generation of Basic Agricultural and Fishery Statistics (SIAP 2016).

  3. 3.

    It should be pointed out that there is a high correlation between the area planted reported by SIAP and calculated from the PROCAMPO beneficiaries by municipality (0.85), indicating that there is a high likelihood that inferences based on PROCAMPO data apply nationally (Supplementary Material Fig S1 and S2).

  4. 4.

    There are other estimates of daily per capita maize grain consumption, e.g. 267 and 370 g (Ranum et al. 2014; Stuart, 1990 respectively) which are lower than the amount used here. While per capita consumption may vary across the country, we are not aware of data documenting this variation. CONEVAL per capita consumption is used to calculate national poverty rates, only distinguishing between rural and urban consumption.

  5. 5.

    6,627,641 + 16,794,624 = 23,422,265- 21,166,430 = 2,255,835 persons. It should be pointed out that in our earlier paper (Bellon et al. 2018a) we estimated that a population of 54 million people could potentially be fed from the production of municipalities with average yields ≤3 t ha−1. The discrepancy is that in that paper we used all the area planted and not just that of farms planting ≤5 ha and the per capita consumption was increased only by 25% instead of 100%.

References

  1. Anselin, L. (1988). Spatial econometrics: Methods and models. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  2. Appendini, K., & Quijada, M. G. (2016). Consumption strategies in Mexican rural households: Pursuing food security with quality. Agriculture and Human Values, 33, 439–454. https://doi.org/10.1007/s10460-015-9614-y.

    Article  Google Scholar 

  3. Arslan, A., & Taylor, J. E. (2009). Farmers’ subjective valuation of subsistence crops: The case of traditional maize in Mexico. American Journal of Agricultural Economics, 91, 956–972. https://doi.org/10.1111/j.1467-8276.2009.01323.x.

    Article  Google Scholar 

  4. Barkin, D. (2002). The reconstruction of a modern Mexican peasantry. The Journal of Peasant Studies, 30, 73–90.

    Article  Google Scholar 

  5. Bellon, M. R., & Brush, S. B. (1994). Keepers of maize in Chiapas, Mexico. Economic Botany, 48, 196–209. https://doi.org/10.1007/BF02908218.

    Article  Google Scholar 

  6. Bellon, M. R., & Hellin, J. (2011). Planting hybrids, keeping landraces: Agricultural modernization and tradition among small-scale farmers in Chiapas, Mexico. World Development, 39, 1434–1443.

    Article  Google Scholar 

  7. Bellon, M. R., & van Etten, J. (2014). Climate change and on-farm conservation of crop landraces in centres of diversity. In M. Jackson, B. ford-Lloyd, B.& M. L. Parry(Eds.), Plant genetic resources and climate change (pp.137-150). Wallingford, UK and New York, USA: CABI publishing.

  8. Bellon, M. R., Gotor, E., & Caracciolo, F. (2015). Conserving landraces, improving livelihoods: How to assess the success of on-farm conservation projects? International Journal of Agricultural Sustainability, 13, 167–182. https://doi.org/10.1080/14735903.2014.986363.

    Article  Google Scholar 

  9. Bellon, M. R., Mastretta-Yanes, A., Ponce-Mendoza, A., Ortiz-Santa María, D., Oliveros-Galindo, O., Perales, H., Acevedo, F., & Sarukhán, J. (2018a). Evolutionary and food supply implications of ongoing maize domestication by Mexican campesinos. Proceedings of the Royal Society B, 285, 20181049. https://doi.org/10.1098/rspb.2018.1049.

    Article  PubMed  Google Scholar 

  10. Bellon, M.R., Mastretta-Yanes, A., Ponce-Mendoza, A., Ortiz-Santa María, D., Oliveros-Galindo, O., Perales, H., Acevedo, F., & Sarukhán, J. (2018b). Data from: Evolutionary and food supply implications of ongoing maize domestication by Mexican campesinos. 2018; dryad digital repository. https://doi.org/10.5061/dryad.79q870b.

  11. Benz, B. F., Perales, H. R., & Brush, S. B. (2007). Tzeltal and Tzotzil farmer knowledge and maize diversity in Chiapas, Mexico. Current Anthropology, 48, 289–300. https://doi.org/10.1086/512986.

    Article  Google Scholar 

  12. Bivand, R. S., & Wong, D. W. S. (2018). Comparing implementations of global and local indicators of spatial association. TEST, 27, 716–748. https://doi.org/10.1007/s11749-018-0599-x.

    Article  Google Scholar 

  13. Bivand, R., & Piras, G. (2015). Comparing implementations of estimation methods for spatial econometrics. Journal of statistical software. 63(18):1-36. URL www.jstatsoft.org/v63/i18/.

  14. Boué, C., López-Ridaura, S., Rodríguez-Sanchez, L. M., Hellin, J., & Fuentes-Ponce, M. (2018). Local dynamics of native maize value chains in a peri-urban zone in Mexico: The case of San Juan Atzacualoya in the state of Mexico. Journal of Rural Studies, 64, 28–38.

    Article  Google Scholar 

  15. Brush, S. B., & Perales, H. R. (2007). A maize landscape: Ethnicity and agro-biodiversity in Chiapas Mexico. Agriculture, Ecosystems and Environment, 121, 211–221. https://doi.org/10.1016/j.agee.2006.12.018.

    Article  Google Scholar 

  16. Brush, S. B., Bellon, M. R., Hijmans, R. J., Orozco-Ramirez, Q., Perales, H., & van Etten, J. (2015). Assessing maize genetic erosion, commentary to the paper Dyer et al. (2014) genetic erosion in maize’s center of origin. Proceedings of the National Academy of Sciences USA, 112 (1): E1. Doi/https://doi.org/10.1073/pnas.1422010112.

  17. Cancian, F. (1989). Economic behavior in peasant communities. In S. Plattner (Ed.), Economic anthropology (pp. 127–170). Stanford: Stanford University Press.

    Google Scholar 

  18. CONABIO (2011). Proyecto Global de Maíces Nativos. México, DF: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad; Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias; Instituto Nacional de Ecología y cambio Climático. biodiversidad.gob.mx/diversidad/proyectoMaices

  19. CONAPO (n.d.-a) Categoría migratoria municipal 1995–2000 y 2005–2010. México, DF: Consejo Nacional de Población. www.conapo.gob.mx/work/models/CONAPO/Migracion_Interna/Descargas/Categoria_migratoria_municipio_1995_2000_y_2005_2010.xlsx Accessed 8 August, 2019.

  20. CONAPO (n.d.-b). Índices de intensidad migratoria Mexico-Estados Unidos 2010. México, DF: Consejo Nacional de Población. conapo.gob.mx/swb/CONAPO/Indices_de_intensidad_migratoria_Mexico-Estados_Unidos_2010 Accessed July 31, 2019.

  21. CONEVAL (n.d.). Medición de la pobreza. Glosario. México, DF: Consejo Nacional de Evaluación de la Política de Desarrollo Social. www.coneval.org.mx/Medicion/Paginas/Glosario.aspx Accessed 10 August, 2019.

  22. CONEVAL (2010). Evolución de la pobreza por ingresos estatal y municipal. México, DF: Consejo Nacional de Evaluación de la Política de Desarrollo Social. www.coneval.org.mx/Medicion/Paginas/Evolucion-de-las-dimensiones-de-pobreza.aspx Accessed 10 August, 2019.

  23. CONEVAL (2012). Construcción de las líneas de bienestar. Documento metodológico. México: Consejo Nacional de Evaluación de la Política de Desarrollo Social.

  24. Cuervo-Robayo, A. P., Tellez-Valdez, O., Gomez-Albores, M. A., Venegas-Barrera, C. S., Manjarrez, J., & Martinez-Meyer. (2014). An update of high-resolution monthly climate surfaces for Mexico. International Journal of Climatology, 34, 2427–2437. https://doi.org/10.1002/joc.3848.

    Article  Google Scholar 

  25. Davenport, F., Steigerwald, D., & Sweeney, S. (2016). Open trade, price supports, and regional price behavior in Mexican maize markets. Economic Geography, 92, 201–225.

    Article  Google Scholar 

  26. de Janvry, A., Fafchamps, M., & Sadoulet, E. (1991). Peasant household behaviour with missing markets: Some paradoxes explained. Economic Journal., 101, 1400–1417.

    Article  Google Scholar 

  27. Doebley, J. (2004). The genetics of maize evolution. Annual Review of Genetics, 38, 37–59. https://doi.org/10.1146/annurev.genet.38.072902.092425.

    CAS  Article  PubMed  Google Scholar 

  28. Dyer, G., Lopez-Feldman, A., Yúnez-Naude, A., & Taylor, J. E. (2014). Genetic erosion in maize’s center of origin. Proceedings of the National Academy of Sciences USA, 111(39), 14094–14099. https://doi.org/10.1073/pnas.1407033111.

    CAS  Article  Google Scholar 

  29. Dyer, G., Taylor, J. E., & Boucher, S. (2006). Subsistence response to market shocks. American Journal of Agricultural Economics, 88, 279–291. https://doi.org/10.1111/j.1467-8276.2006.00858.x.

    Article  Google Scholar 

  30. Eakin, H., Perales, H., Appendini, K., & Sweeney, S. (2014). Selling maize in Mexico: The persistence of peasant farming in an era of global markets. Development Change, 45, 133–155. https://doi.org/10.1111/dech.12074.

    Article  Google Scholar 

  31. Eakin, H., Appendini, K., Sweeney, S., & Perales, H. (2015). Correlates of maize land and livelihood change among maize farming households in Mexico. 2015. World Development, 70, 78–91. https://doi.org/10.1016/j.worlddev.2014.12.012.

    Article  Google Scholar 

  32. Fernández-Suarez, R., Morales-Chávez, L. A., & Gálvez-Mariscal, A. (2013). Importancia de los maíces nativos de México en la dieta nacional: una revisión indispensable. Revista Fitotecnia Mexicana, 36 Suppl 3-A: 275-283.

  33. Fox, J., & Haight, L. (2010). Mexican agricultural policy: Multiple goals and conflicting interests. In J. Fox & L. Haight (Eds.), Subsidizing inequality: Mexican corn policy since NAFTA (pp. 9–50). Santa Cruz: Woodrow Wilson International Center for Scholars.

    Google Scholar 

  34. Garcia, S., & Bergvinson, D. J. (2007). Programa integral para reducir pérdidas poscosecha en maíz. Agricultura Técnica en México, 33, 181–189.

    Google Scholar 

  35. Gordillo de Anda, G., de Janvry, A., & Sadoulet, E. (1999).La segunda reforma agraria de México: Respuestas de familias y comunidades, 1990-1994. México, DF: Fondo de Cultura Económica.

  36. Graeub, B. E., Chappell, M. J., Wittman, H., Ledermann, S., Bezner Kerr, R., & Gemmill-Herren, B. (2016). The state of family farms in the world. World Development, 87, 1–15. https://doi.org/10.1016/j.worlddev.2015.05.012.

    Article  Google Scholar 

  37. Guevara M, & Arroyo-Cruz, C. E. (2016a). Modelo digital de elevaciones corregido resolución 1km, escala: 1:4000000, Edición: 1.México, DF: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad; 2016.

  38. Guevara, M., & Arroyo-Cruz, C. E. (2016b). Pendiente. In Escala: 1:4000000, Edición: 1. México: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad.

    Google Scholar 

  39. Guliani, A. (2007). Developing markets for agrobiodiversity: Securing livelihoods in dryland areas. London: Routledge.

    Google Scholar 

  40. Hellin, J., Orenstein, O., Beuchelt, T., Camacho, C., & Flores, D. (2013). Maize Stover use and sustainable crop production in mixed crop-livestock systems in Mexico. Field Crop Research, 153, 12–21. https://doi.org/10.1016/j.fcr.2013.05.014.

    Article  Google Scholar 

  41. Hernandez, X. E. (1985). Maize and man in the greater southwest. Economic Botany, 39, 416–430.

    Article  Google Scholar 

  42. Hufford, M. B., Xu, X., van Heerwaarden, J., Pyhäjärvi, T., Chia, J. M., Cartwright, R. A., Elshire, R. J., Glaubitz, J. C., Guill, K. E., Kaeppler, S. M., Lai, J., Morrell, P. L., Shannon, L. M., Song, C., Springer, N. M., Swanson-Wagner, R. A., Tiffin, P., Wang, J., Zhang, G., Doebley, J., McMullen, M. D., Ware, D., Buckler, E. S., Yang, S., & Ross-Ibarra, J. (2012). Comparative population genomics of maize domestication and improvement. Nature Genetics, 44, 808–811. https://doi.org/10.1038/ng.2309.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. INEGI (n.d.). Sistema Estatal y Municipal de Bases de Datos (SINBAD). México, DF: Instituto Nacional de Estadística y Geografía. sc.inegi.org.mx/cobdem/resultados.jsp?w=79&Backidhecho=570&Backconstem=569&constembd=182&tm=%27Backidhecho:3,Backconstem:3,constembd:3%27 Accessed 8 August, 2019.

  44. INEGI (2010). México - Censo de Población y Vivienda 2011. México, DF: Instituto Nacional de Estadística y Geografía. www.inegi.org.mx/rnm/index.php/catalog/71/study-description?idPro= Accessed 8 August, 2019.

  45. INEGI. (2015). Conjunto de datos vectoriales de uso de suelo y vegetación Escala 1:250 000, Serie V (capa unión). México: Instituto Nacional de Estadística y Geografía.

    Google Scholar 

  46. Kato, T. A., Mapes, C., Mera, M. L., Serratos, J. A., & Bye, R. A., (Eds.). (2009). Origen y diversificación del maíz: Una revisión analítica. México: Universidad Nacional Autónoma de México, Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. www.biodiversidad.gob.mx/genes/pdf/origen_div_maiz.pdf.

  47. Keleman, A., & Hellin, J. (2009). Specialty maize varieties in Mexico: A case study in market-driven agro-biodiversity conservation. Journal of Latin American Geography, 8, 147–174. https://doi.org/10.1353/lag.0.0061.

    Article  Google Scholar 

  48. Le Cour Grandmaison, R., Morris, N., & Smith, B. (2019). The last harvest? From the US fentanyl boom to the Mexican opium crisis. Journal of Illicit Economies and Development, 1, 312–329. https://doi.org/10.31389/jied.45.

    Article  Google Scholar 

  49. Martínez-Carrasco, F., Colino Sueiras, J. B., & Gómez Cruz, M. A. (2014). Pobreza y políticas de desarrollo rural en México. Estudios Sociales, 22, 11–35.

    Google Scholar 

  50. McLean-Rodríguez, F. D., Camacho-Villa, T. C., Almekinders, C. J. M., Pè, M. E., Dell’Acqua, M., & Costich, D. (2019). The abandonment of maize landraces over the last 50 years in Morelos, Mexico: A tracing study using a multi-level perspective. Agriculture and Human Values, 36, 651–668. https://doi.org/10.1007/s10460-019-09932-3.

    Article  Google Scholar 

  51. Mercer, K. L., & Perales, H. (2010). Evolutionary response of landraces to climate change in centers of crop diversity. Evolutionary Applications, 3, 480–493. https://doi.org/10.1111/j.1752-4571.2010.00137.x.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Midler, E., Pascual, U., Drucker, A. G., Narloch, U., & Soto, J. L. (2015). Unraveling the effects of payments for ecosystem services on motivations for collective action. Ecological Economics, 120, 394–405. https://doi.org/10.1016/j.ecolecon.2015.04.006.

    Article  Google Scholar 

  53. Murray-Tortarolo, G. N., Jaramillo, V. J., & Larsen, J. (2018). Food security and climate change: The case of rainfed maize production in Mexico. Agriculture and Forest Meteorology, 253-254, 124–131. https://doi.org/10.1016/j.agrformet.2018.02.011.

    Article  Google Scholar 

  54. Narloch, U., Drucker, A. G., & Pascual, U. (2011). Payments for agrobiodiversity conservation services for sustained on-farm utilization of plant and animal genetic resources. Ecological Economics, 70, 1837–1845. https://doi.org/10.1016/j.ecolecon.2011.05.018.

    Article  Google Scholar 

  55. OECD. (2007). OCDE Estudios de política rural. México: Secretaria de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación, Instituto Nacional para el Desarrollo de Capacidades del Sector Rural AC.

    Google Scholar 

  56. Orozco-Ramírez, Q., Ross-Ibarra, J., Santacruz-Varela, A., & Brush, S. (2016). Maize diversity associated with social origin and environmental variation in southern Mexico. Heredity, 116, 477–484. https://doi.org/10.1038/hdy.2016.10.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Orozco-Ramírez, Q., Astier, M., & Barrasa, S. (2020). Agriculture land use change after NAFTA in central West Mexico. Land, 6(4), 66. https://doi.org/10.3390/land6040066.

    Article  Google Scholar 

  58. Pascual, U., & Perrings, C. (2007). Developing in1centives and economic mechanisms for in situ biodiversity conservation in agricultural landscapes. Agriculture Ecosystems and Environment, 121, 256–268. https://doi.org/10.1016/j.agee.2006.12.025.

    Article  Google Scholar 

  59. Perales, H. R., Benz, B. F., & Brush, S. B. (2005). Maize diversity and ethnolinguistic diversity in Chiapas, Mexico. Proceedings of the National Academy of Sciences USA, 102, 949–954. https://doi.org/10.1073/pnas.0408701102.

    CAS  Article  Google Scholar 

  60. Perales, H., & Golicher, D. (2014). Mapping the diversity of maize races in Mexico. PLoS One, 9, 1–20. https://doi.org/10.1371/journal.pone.0114657.

    CAS  Article  Google Scholar 

  61. Perales, H., Brush, S. B., & Qualset, C. O. (2003). Landraces of maize in Central Mexico: An altitudinal transect. Economic Botany, 57, 7–20. https://doi.org/10.1663/0013-0001(2003)057[0007:LOMICM]2.0.CO;2.

    Article  Google Scholar 

  62. Pérez-Campuzano, E., & Santos-Cerquera, C. (2013). Tendencias recientes de la migración interna en México. In: CONAPO. La Situación Demográfica en México 2013 (pp. 53-88). México, DF.: CONAPO. www.gob.mx/cms/uploads/attachment/file/112476/La_Situacion_Demografica_de_Mexico_2013.pdf

  63. Pressoir, G., & Berthaud, J. (2004). Population structure and strong divergent selection shape phenotypic diversification in maize landraces. Heredity, 92, 95–101. https://doi.org/10.1038/sj.hdy.6800388.

    CAS  Article  PubMed  Google Scholar 

  64. R Core Team. (2018). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. URL www.R-project.org/.

  65. Ranum, P., Peña-Rosas, J. P., & Garcia-Casa, M. N. (2014). Global maize production, utilization, and consumption. Annals of the New York Academy of Sciences, 1312, 105–112. https://doi.org/10.1111/nyas.12396.

    Article  PubMed  Google Scholar 

  66. Ricciardi, V., Ramankutty, N., Mehrabi, Z., Jarvis, L., & Chookolingo, B. (2018). How much of the world’s food do smallholders produce? Global Food Security, 17, 64–72. https://doi.org/10.1016/j.gfs.2018.05.002.

    Article  Google Scholar 

  67. Robson, J., Klooster, D., Worthen, H., & Hernández-Díaz, J. (2017). Migration and agrarian transformation in indigenous Mexico. Journal of Agrarian Change, 18, 299–323. onlinelibrary.wiley.com/doi/full/10.1111/joac.12224.

  68. Ruiz Corral, J. A., Durán Puga, N., González Sánchez, J. J., Ron Parra, J., González Eguiarte, D. R., Holland, J. B., & Medina García, M. (2008). Climatic adaptation and ecological descriptors of 42 Mexican maize races. Crop Science, 48, 1502–1512. https://doi.org/10.2135/cropsci2007.09.0518.

    Article  Google Scholar 

  69. SIAP. (2010). Anuario Estadístico de la Producción Agrícola. Cierre de la producción agrícola. Ubicación geográfica: por municipio; ciclo: primavera-verano; modalidad: temporal. Ciudad de México: Servicio de Información Agroalimentaria y Pesquera. nube.siap.gob.mx/cierreagricola/ (Accessed September 22, 2020).

  70. SIAP. (2016). Norma técnica para la generación de estadística básica agropecuaria y pesquera (pp. 348-355). México, DF: Secretaria de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. www.gob.mx/siap/normatividad-estadistica/.

  71. Stuart, J. W. (1990). Maize use by rural Mesoamerican households. Human Organization, 49, 135–139. https://doi.org/10.17730/humo.49.2.9435mp317r212348.

    Article  Google Scholar 

  72. Tamariz, G. In press. Agrobiodiversity conservation with illegal-drug crops: An approach from the prisons in Oaxaca, Mexico. Geoforum. https://doi.org/10.1016/j.geoforum.2020.10.012

  73. Tobin, D., Bates, R., Brennan, M., & Gill, T. (2016). Peru potato potential: Biodiversity conservation and value chain development. Renewal Agriculture and Food Systems, 1, 1–14. https://doi.org/10.1017/S1742170516000284.

    Article  Google Scholar 

  74. Ureta, C., Gonzalez, E. J., Espinosa, A., Trueba, A., Piñeyro-Nelson, A., & Alvarez-Buylla, E. (2020). Maize yield in Mexico under climate change. Agricultural Systems, 177, 102697. https://doi.org/10.1016/j.agsy.2019.102697.

    Article  Google Scholar 

  75. Ureta, C., Martínez-Meyer, E., Perales, H. R., & Álvarez-Buylla, E. (2011). Projecting the effects of climate change on the distribution of maize races and their wild relatives in Mexico. Global Change Biology, 18, 1073–1082. https://doi.org/10.1111/j.1365-2486.2011.02607.x.

    Article  Google Scholar 

  76. Uribe-Vargas, L., Ramírez-García, T., & Labarthe-Álvarez, R. (2012). Índices de intensidad migratoria México-Estados Unidos 2010. México: Consejo Nacional de Población conapo.gob.mx/work/models/CONAPO/intensidad_migratoria/pdf/Migracion_Mex_EU.pdf.

    Google Scholar 

  77. Van der Ploeg, J. D. (2014). Peasant-driven agricultural growth and food sovereignty. Journal of Peasant Studies., 41, 999–1030.

    Article  Google Scholar 

  78. van Dusen, E., & Taylor, E. (2005). Missing markets and crop diversity: Evidence from Mexico. Environment and Development Economics, 10, 513–531. https://doi.org/10.1017/S1355770X05002317.

    Article  Google Scholar 

  79. van Heerwaarden, J., Hellin, J., Visser, R. F., & van Eeuwijk, F. A. (2009). Estimating maize genetic erosion in modernized smallholder agriculture. Theoretical and Applied Genetics, 119, 875–888. https://doi.org/10.1007/s00122-009-1096-0.

    Article  PubMed  Google Scholar 

  80. Vázquez-Carrillo, M. G., Pérez, J. P., Hernández Casillas, J. M., Marrufo Díaz, M. L., & Martínez Ruiz, E. (2010). Calidad de grano y de tortillas de maíces criollos del altiplano y Valle del Mezquital. México. Revista Fitotecnia Mexicana., 33, 49–56.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mauricio R. Bellon.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest

B.Supplementary Information

ESM 1

(PDF 1224 kb)

A.Appendix 1. Diagnostic tests

A.Appendix 1. Diagnostic tests

Table 4 presents the value of the Moran I statistic two-sided on the residuals of an OLS regression of the model in Eq. 1. It is highly statistically significant, indicating the presence of spatial autocorrelation and thus the need to address it. Table 4b-c shows the values of different Lagrange Multiplier tests statistics for different specifications of the spatial autocorrelation: error dependence and lagged dependent variable. Since both the LMerr and LMlag are statistically significant, we compared their robust forms RLMerr and RLMlag. Results suggest that the lag model as the likely alternative (RMLag = 22.273, p value = 0.000 versus RLMerr = 0.63505, p value = 0.426).

Table 4 Diagnostic tests for spatial autocorrelation (new)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bellon, M.R., Mastretta-Yanes, A., Ponce-Mendoza, A. et al. Beyond subsistence: the aggregate contribution of campesinos to the supply and conservation of native maize across Mexico. Food Sec. 13, 39–53 (2021). https://doi.org/10.1007/s12571-020-01134-8

Download citation

Keywords

  • Zea mays L.
  • Smallholder farmers
  • Local markets
  • Crop evolution
  • Spatial lag models