Skip to main content
Log in

Analysis and vulnerability of the international wheat trade network

  • Original Paper
  • Published:
Food Security Aims and scope Submit manuscript

Abstract

Wheat is one of the three basic cereals providing the necessary calorific intake for most of the world’s population. For this reason, its trade is critical to many countries in order to fulfil their internal demand and strategic stocks. In this paper, we use complex network analysis tools to study the international wheat trade network and its evolving characteristics for the period 2009–2013. To understand the vulnerability of each country’s dependence on the imports of this crop we have performed different analyses, simulating shocks of varying intensities for the main wheat producers, and observed the population affected by the production drop. As a result, we conclude that globally the network is slightly more resilient than four years previously, although at the same time some developing countries have slipped into a vulnerable situation. We have also analysed the effects of a global shock affecting all major producers, assessing its impact on every country. Some comments on the COVID-19 outbreak and the political decisions taken by governments following the pandemic declaration are included, observing that given their capital-intensive characteristics, no negative effects should currently be expected in the wheat market.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Borgatti, S. P., Everett, M. G., & Freeman, L. C. (2002). Ucinet for windows: Software for social network analysis. Harvard: Analytic Technologies.

    Google Scholar 

  • Brin, S., & Page, L. (1998). The anatomy of a large-scale Hypertextual web search engine. Computer Networks and ISDN Systems, 30, 107–117.

    Article  Google Scholar 

  • Burkholz, R., & Schweitzer, F. (2019). International crop trade networks: The impact of shocks and cascades. Environmental Research Letters, 14, 114013.

    Article  Google Scholar 

  • Cardwell, R., & Ghazalian, P. L. (2020). COVID-19 and international food assistance: Policy proposals to keep food flowing. World Development, 135, 105059.

    Article  Google Scholar 

  • Clauset, A., Shalizi, C. R., & Newman, M. E. J. (2009). Power-law distributions in empirical data. SIAM Review, 51(4), 661–703.

    Article  Google Scholar 

  • Costa, L. D. F., Rodrigues, F. A., Travieso, G., & Villas Boas, P. R. (2007). Characterization of complex networks: A survey of measurements. Advances in Physics, 56, 167–242.

    Article  Google Scholar 

  • d’Amour, C. B., Wenz, L., Kalkuhl, M., Steckel, J. C., & Creutzig, F. (2016). Teleconnected food supply shocks. Environmental Research Letters, 11, 035007.

    Article  Google Scholar 

  • Davidson, R., & MacKinnon, J. (1981). Several tests for model specification in the presence of alternative hypotheses. Econometrica, 49, 781–793.

    Article  Google Scholar 

  • D’Odorico, P., Carr, J., Laio, F., Ridolfi, L., & Vandoni, S. (2014). Feeding humanity through global food trade. Earth’s Future, 2, 458–469.

    Article  Google Scholar 

  • Dong, C., Yin, Q., Lane, K. J., Yan, Z., Shi, T., Liu, Y., & Bell, M. L. (2018). Competition and transmission evolution of global food trade: A case study of wheat. Physica A, 509, 998–1008.

    Article  Google Scholar 

  • Dupas, M.-C., Halloy, J., & Chatzimpiros, P. (2019). Time dynamics and invariant subnetwork structures in the world cereals trade network. PLoS One, 14(5), e0216318.

    Article  CAS  Google Scholar 

  • Ercsey-Ravasz, M., Toroczkai, Z., Lakner, Z., & Baranyi, J. (2012). Complexity of the international agro-food trade network and its impact on food safety. PLoS One, 7(5), e37810.

    Article  CAS  Google Scholar 

  • Fair, K. R., Bauch, C. T., & Anand, M. (2017). Dynamics of the global wheat trade network and resilience to shocks. Scientific Reports, 7, 7177.

    Article  Google Scholar 

  • FAO (2018). FAOSTAT. Online statistical database: Production (available at http://faostat3.fao.org/download/Q/QC/E).

  • Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486, 75–174.

    Article  Google Scholar 

  • Fraser, E. D. G., Simelton, E., Termansen, M., Gosling, S. N., & South, A. (2013). “Vulnerability hotspots”: Integrating socio-economic and hydrological models to identify where cereal production may decline in the future due to climate change induced drought. Agricultural and Forest Meteorology, 170, 195–205.

    Article  Google Scholar 

  • Gephart, J. A., Rovenskaya, E., Dieckmann, U., Pace, M. L., & Brännström, A. (2016). Vulnerability to shocks in the global seafood trade network. Environmental Research Letters, 11, 035008.

    Article  Google Scholar 

  • Jägermeyr, J., Robock, A., Elliott, J., Müller, C., Xia, L., Khabarov, N., Folberth, C., Schmid, E., Liu, W., Zabel, F., Rabin, S. S., Puma, M. J., Heslin, A., Franke, J., Foster, I., Asseng, S., Bardeen, C. G., Toon, O. B., & Rosenzweig, C. (2020). A regional nuclear conflict would compromise global food security. Proceedings of the National Academy of Sciences, 117(13), 7071–7081.

    Article  Google Scholar 

  • Jones, A. W., & Phillips, A. (2016). Historic food production shocks: Quantifying the extremes. Sustainability, 8, 427.

    Article  Google Scholar 

  • Kummu, M., Kinnunen, P., Lehikoinen, E., Porkka, M., Queiroz, C., Röös, E., Troell, M., & Weil, C. (2020). Interplay of trade and food system resilience: Gains on supply diversity over time at the cost of trade independency. Global Food Security, 24, 100360.

    Article  Google Scholar 

  • Larochez-Dupraz, C., & Huchet-Bourdon, M. (2016). Agricultural support and vulnerability of food security to trade in developing countries. Food Security, 8, 1191–1206.

    Article  Google Scholar 

  • Marchand, P., Carr, J. A., Dell’Angelo, J., Fader, M., Gephart, J. A., Kummu, M., Magliocca, N. R., Porkka, M., Puma, M. J., Ratajczak, Z., Rulli, M. C., Seekell, D. A., Suweis, S., Tavoni, A., & D’Odorico, P. (2016). Reserves and trade jointly determine exposure to food supply shocks. Environmental Research Letters, 11, 095009.

    Article  Google Scholar 

  • Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., & Alon, U. (2002). Network motifs: Simple building blocks of complex networks. Science, 298, 824–827.

    Article  CAS  Google Scholar 

  • Newman, M. E. J. (2003). The structure and function of complex networks. SIAM Review, 45, 167–256.

    Article  Google Scholar 

  • Newman, M. E. J. (2004). Detecting community structure in networks. European Physical Journal B, 38, 321–330.

    Article  CAS  Google Scholar 

  • Newman, M. E. J. (2006). Finding community structure using the eigenvectors of matrices. Physical Review E, 74, 036104.

    Article  CAS  Google Scholar 

  • Papke, L. E., & Wooldridge, J. M. (1996). Econometric methods for fractional response variables with an application to 401(k) plan participation rates. Journal of Applied Econometrics, 11(6), 619–632.

    Article  Google Scholar 

  • Puma, M. J., Bose, S., Chon, S. Y., & Cook, B. I. (2015). Assessing the evolving fragility of the global food system. Environmental Research Letters, 10, 024007.

    Article  Google Scholar 

  • Ramalho, E. A., Ramalho, J. J. S., & Henriques, P. D. (2010). Fractional regression models for second stage DEA efficiency analyses. Journal of Productivity Analysis, 34, 239–255.

    Article  Google Scholar 

  • Sartori, M., & Schiavo, S. (2015). Connected we stand: A network perspective on trade and global food security. Food Policy, 57, 114–127.

    Article  Google Scholar 

  • Selim, K. S., & Abdalbaki, S. M. (2019). On the relationship between virtual water network and crops intra-trade among Nile basin countries. Water Policy, 21, 481–495.

    Article  Google Scholar 

  • Sulser, T., Dunston, S (2020). COVID-19-related trade restrictions on rice and wheat could drive up prices and increase hunger. IFPRI blog. Available: https://www.ifpri.org/blog/covid-19-related-trade-restrictions-rice-and-wheat-could-drive-prices-and-increase-hunger

  • Tamea, S., Laio, F., & Ridolfi, L. (2016). Global effects of local food-production crises: A virtual water perspective. Scientific Reports, 6, 18803.

    Article  CAS  Google Scholar 

  • Torero Cullen, M. (2020). COVID-19 and the risk to food supply chains: How to respond? FAO. Available at: http://www.fao.org/3/ca8388en/CA8388EN.pdf#page=1&zoom=160,232,842

  • Torreggiani, S., Mangioni, G., Puma, M. J., & Fagiolo, G. (2018). Identifying the community structure of the food-trade international multi-network. Environmental Research Letters, 13, 054026.

    Article  Google Scholar 

  • Vora, N., Fath, B. D., & Khanna, V. A. (2019). Systems approach to assess trade dependencies in U.S. food-energy-water Nexus. Environmental Science Technology, 53(18), 10941–10950.

    Article  CAS  Google Scholar 

  • Wang, C. (2010). A Social Network Analysis of International Wheat Trade, proceedings of the 3rd international conference on information management, innovation management and industrial engineering, 26–28 November 2010. China: Kunming.

    Google Scholar 

  • Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Yu, X., Liu, C., Wang, H., & Feil, J. H. (2020). The impact of COVID-19 on food prices in China: Evidence of four major food products from Beijing, Shandong and Hubei provinces. China Agricultural Economic Review, 12(3), 445–458.

    Article  Google Scholar 

Download references

Acknowledgements

This research was carried out with the financial support of the Spanish Ministry of Economy, Industry and Competitiveness, and the European Regional Development Fund (ERDF), grant DPI2017-85343-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Gutiérrez-Moya.

Supplementary Information

ESM 1

(DOCX 94 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutiérrez-Moya, E., Adenso-Díaz, B. & Lozano, S. Analysis and vulnerability of the international wheat trade network. Food Sec. 13, 113–128 (2021). https://doi.org/10.1007/s12571-020-01117-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12571-020-01117-9

Keywords