Maize farmer preferences for intercropping systems to reduce Striga in Malawi

Abstract

In southern Africa the repeated cultivation of maize (Zea mays) and climate variability (especially frequent and extended droughts) have created conditions favouring parasitic weed infestation (e.g., Striga asiatica). In the past decade, Striga has reduced maize yields for smallholder farmers (cultivating less than two hectares), not only in southern Africa, but across sub-Saharan Africa (SSA). Parasitism of maize by Striga leads to significant grain yield losses. Intercropping legumes within maize-based systems has been shown to decrease Striga infestation and improve food security. Before cultivating these cropping systems, farmers consider different attributes associated with them (e.g., efforts or cost of inputs). Understanding farmers’ preferences for these attributes generates insights as how to increase adoption of intercropping as a Striga control practice. We use discrete choice experiments to identify the trade-offs which Malawian farmers are willing to accept among the attributes of choice scenarios for Striga control practices. Results indicate that farmers are willing (and in some cases unwilling) to sacrifice different fractions of maize yield for suppression of Striga, labour intensity, soil fertility and intercropped legume yield. Male and female farmers have heterogeneous preferences for these attributes. These findings have significant implications for Striga management and its effect on a crop that sustains the livelihoods of more than 80% of Malawians.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Abdul, K., Chemining'wa, G. N., & Onwonga, R. N. (2012). Relationships between agronomic practices, soil chemical characteristics and Striga reproduction in Dryland areas of Tanzania. Journal of Agricultural Science and Technology, 2(10A), 1134–1141.

    CAS  Google Scholar 

  2. Ae, N., Arihara, J., Okada, K., Yoshihara, T., Otani, T., & Johansen, C. (1993). The role of piscidic acid secreted by pigeon pea roots grown in an Alfisol with low-P fertility. In P. J. Randall, E. Delhaize, R. A. Richards, & R. Munns (Eds.), Genetic aspects of plant mineral nutrition (pp. 279–288). Canberra: Springer.

    Google Scholar 

  3. Ajayi, O. C., & Kwesiga, F. (2003). Implications of local policies and institutions on the adoption of improved fallows in eastern Zambia. Agroforestry Systems, 59(3), 327–336.

    Google Scholar 

  4. Anderson, J. R., & Feder, G. (2004). Agricultural extension: Good intentions and hard realities. The World Bank Research Observer, 19(1), 41–60.

    Google Scholar 

  5. Árvai, J., Kellon, D., León, R., Gregory, R., & Richardson, R. (2014). Structuring international development decisions: Confronting trade-offs between land use and community development in Costa Rica. Environment Systems and Decisions, 34(2), 224–236.

    Google Scholar 

  6. Atera, E. A., Itoh, K., Azuma, T., & Ishii, T. (2012). Farmers’ perception and constraints to the adoption of weed control options: The case of Striga asiatica in Malawi. Journal of Agricultural Science, 4(5), 41.

    Google Scholar 

  7. Austin, G. (2008). Resources, techniques, and strategies south of the Sahara: Revising the factor endowments perspective on African economic development, 1500–2000. The Economic History Review, 61, 587–624.

    Google Scholar 

  8. Bezner Kerr, R., Snapp, S., Chirwa, M., Shumba, L., & Msachi, R. (2007). Participatory research on legume diversification with Malawian smallholder farmers for improved human nutrition and soil fertility. Experimental Agriculture, 43(4), 437–453.

    Google Scholar 

  9. Birol, E., Villalba, E. R., & Smale, M. (2009). Farmer preferences for milpa diversity and genetically modified maize in Mexico: A latent class approach. Environment and Development Economics, 14(04), 521–540.

    Google Scholar 

  10. Birol, E., Smale, M., & Yorobe Jr., J. M. (2012). Bi-modal preferences for bt maize in the Philippines: A latent class model. AgBioForum, 15(2), 175–190.

    Google Scholar 

  11. Cechin, C., & Press, M. C. (1993). Nitrogen relations of the sorghum–Striga hermonthica host–parasite association: Germination, attachment and early growth. New Phytology, 124, 681–687.

    CAS  Google Scholar 

  12. Choice Metrics Pty Ltd. (2009). NGENE v1.0 User Manual and Reference Guide. Sydney, Australia. https://dl.dropboxusercontent.com/u/9406880/NgeneManual112.pdf. Accessed July 2017.

  13. de Groote, H., Wangare, L., Kanampiu, F., Odendo, M., Diallo, A., Karaya, H., & Friesen, D. (2008). The potential of a herbicide resistant maize technology for Striga control in Africa. Agricultural Systems, 97, 83–94.

    Google Scholar 

  14. Ellis, F., Kutengule, M., & Nyasulu, A. (2003). Livelihoods and rural poverty reduction in Malawi. World Development, 31, 1495–1510.

    Google Scholar 

  15. Ellis-Jones, J., Schulz, S., Douthwaite, B., Hussaini, M. A., Oyewole, B. D., Olanrewaju, A. S., & White, R. (2004). An assessment of integrated Striga hermonthica control and early adoption by farmers in northern Nigeria. Experimental Agriculture, 40(3), 353–368.

    Google Scholar 

  16. FAOSTAT (2010). Statistical databases and data-sets of the food and agriculture Organization of the United Nations. Access from http://www.fao.org/docrep/015/am081m/am081m00.htm. Accessed September 2018

  17. Ferguson, A. E., & Mkandawire, R. M. (1993). Common beans and farmer managed diversity: Regional variations in Malawi. Culture and Agriculture, 13, 14–17.

    Google Scholar 

  18. Fern, E. F. (1982). The use of focus groups for idea generation: The effects of group size, acquaintanceship, and moderator on response quantity and quality. Journal of Marketing Research, 19(1), 1–13.

    Google Scholar 

  19. Franke, A. C., Ellis-Jones, J., Tarawali, G., Schulz, S., Hussaini, M. A., Kureh, I., et al. (2006). Evaluating and scaling-up integrated Striga hermonthica control technologies among farmers in northern Nigeria. Crop Protection, 25(8), 868–878.

    Google Scholar 

  20. Garrity, D. P., Akinnifesi, F. K., Ajayi, O. C., Weldesemayat, S. G., Mowo, J. G., Kalinganire, A., et al. (2010). Evergreen agriculture: A robust approach to sustainable food security in Africa. Food Security, 2, 197–214.

    Google Scholar 

  21. Gianessi, L., & Williams, A. (2011). Overlooking the obvious: The opportunity for herbicides in Africa. Outlooks on Pest Management, 22(5), 211–215.

    Google Scholar 

  22. Giller, K. E., Witter, E., Corbeels, M., & Tittonell, P. (2009). Conservation agriculture and smallholder farming in Africa: The heretics’ view. Field Crops Research, 114(1), 23–34.

    Google Scholar 

  23. Harrigan, J. (2003). U-turns and full circles: Two decades of agricultural reform in Malawi 1981–2000. World Development, 31, 847–863.

    Google Scholar 

  24. Hassan, R., & Nhemachena, C. (2008). Determinants of African farmers’ strategies for adapting to climate change: Multinomial choice analysis. African Journal of Agricultural and Resource Economics, 2(1), 83–104.

    Google Scholar 

  25. Heisey, P. W., & Smale, M. (1995). Maize technology in Malawi: A green revolution in the making? Research report (no. 4). The international maize and wheat improvement center. http://repository.cimmyt.org/xmlui/bitstream/handle/10883/737/59230.pdf?sequence=1. Accessed September 2018

  26. Hensher, D. A. (2010). Hypothetical bias, choice experiments and willingness to pay. Transportation Research Part B: Methodological, 44(6), 735–752.

    Google Scholar 

  27. Hole, A. R., & Kolstad, J. R. (2012). Mixed logit estimation of willingness to pay distributions: A comparison of models in preference and WTP space using data from a health-related choice experiment. Empirical Economics, 42(2), 445–469.

    Google Scholar 

  28. Hudu, A. I., & Gworgwor, N. A. (1998). Preliminary results on evaluation of trap crops for Striga hermonthica (Del.) Benth. control in sorghum. International Millet Newsletter, 39, 118–121.

  29. Johnson, R. B., & Onwuegbuzie, A. J. (2004). Mixed methods research: A research paradigm whose time has come. Educational Researcher, 33(7), 14–26.

    Google Scholar 

  30. Johnson, F. R., Lancsar, E., Marshall, D., Kilambi, V., Mühlbacher, A., Regier, D. A., et al. (2013). Constructing experimental designs for discrete-choice experiments: Report of the ISPOR conjoint analysis experimental design good research practices task force. Value in Health, 16(1), 3–13.

    Google Scholar 

  31. Jury, M. R., & Mwafulirwa, N. D. (2002). Climate variability in Malawi, part 1: Dry summers, statistical associations and predictability. International Journal of Climatology, 22, 1289–1302.

    Google Scholar 

  32. Kabambe, V. H., Kanampiu, F., & Ngwira, A. (2008). Imazapyr (herbicide) seed dressing increases yield, suppresses Striga asiatica and has seed depletion role in maize (Zea mays L.) in Malawi. African Journal of Biotechnology, 7(18), 3293–3298.

    CAS  Google Scholar 

  33. Kalaba, K. F., Chirwa, P., Syampungani, S., & Ajayi, C. O. (2010). Contribution of agroforestry to biodiversity and livelihoods improvement in rural communities of southern African regions. In Tscharntke, T., Leuschner, C., Veldkamp, E., Faust, H., Guhardja, E., & Bidin A. (eds.), Tropical Rainforests and Agroforests under Global Change (pp. 461–476). Springer: Berlin, Heidelberg. 

  34. Khan, Z. R., Midega, C. A., Hassanali, A., Pickett, J. A., & Wadhams, L. J. (2007). Assessment of different legumes for the control of Striga hermonthica in maize and sorghum. Crop Science, 47(2), 730–734.

    Google Scholar 

  35. Khan, Z. R., Midega, C. A., Bruce, T. J., Hooper, A. M., & Pickett, J. A. (2010). Exploiting phytochemicals for developing a ‘push–pull’ crop protection strategy for cereal farmers in Africa. Journal of Experimental Botany, 61(15), 4185–4196.

    CAS  PubMed  Google Scholar 

  36. Khan, Z. R., Midega, C. A., Pittchar, J. O., Murage, A. W., Birkett, M. A., Bruce, T. J., & Pickett, J. A. (2014). Achieving food security for one million sub-Saharan African poor through push–pull innovation by 2020. Philosophical Transactions of the Royal Society, B: Biological Sciences, 369(1639), 1–11.

    Google Scholar 

  37. Knowler, D., Philcox, N., Nathan, S., Delamare, W., Haider, W., & Gupta, K. (2009). Assessing prospects for shrimp culture in the Indian Sundarbans: A combined simulation modelling and choice experiment approach. Marine Policy, 33(4), 613–623.

    Google Scholar 

  38. Kontoleon, A., & Yabe, M. (2003). Assessing the impacts of alternative ‘opt-out’ formats in choice experiment studies: Consumer preferences for genetically modified content and production information in food. Journal of Agricultural Policy and Resources, 5(1), 1–43.

    Google Scholar 

  39. Kunisch, M., Linke, K. H., Richter, O., & Koch, O. (1991). Inclusion of conceptual modelling in studies on the population dynamics of the genus Striga. Angewandte Botanik, 65, 45–97.

    Google Scholar 

  40. Lancaster, K. J. (1966). A new approach to consumer theory. The Journal of Political Economy, 74(2), 132–157.

    Google Scholar 

  41. Lancsar, E., & Savage, E. (2004). Deriving welfare measures from discrete choice experiments: Inconsistency between current methods and random utility and welfare theory. Health Economics, 13(9), 901–907.

    PubMed  Google Scholar 

  42. Läpple, D. & Kelley H. (2010). Understanding farmers’ uptake of organic farming. An application of the theory of planned behavior. The 84th Annual Conference of the Agricultural Economics Society, 29th to 31st March 2010, Edinburgh.

  43. Louviere, J. J., Hensher, D. A., & Swait, J. D. (2000). Stated choice methods: Analysis and applications. Cambridge: University Press.

    Google Scholar 

  44. Mangisoni, J. H. (2008). Impact of treadle pump irrigation technology on smallholder poverty and food security in Malawi: A case study of Blantyre and Mchinji districts. International Journal of Agricultural Sustainability, 6, 248–266.

    Google Scholar 

  45. Marenya, P. P., & Barrett, C. B. (2007). Household-level determinants of adoption of improved natural resources management practices among smallholder farmers in western Kenya. Food Policy, 32, 515–536.

    Google Scholar 

  46. Meinzen-Dick, R., Johnson, N., Quisumbing, A. R., Njuki, J., Behrman, J. A., Rubin, D., et al. (2014). The gender asset gap and its implications for agricultural and rural development. In R. Meinzen-Dick, S. Feldstein, & A. R. Quisumbing (Eds.), Gender in Agriculture: Closing the Knowledge Gap. Dordrecht: Springer.

    Google Scholar 

  47. Meinzen-Dick, R., Quisumbing, A., Doss, C., & Theis, S. (2017). Women's land rights as a pathway to poverty reduction: Framework and review of available evidence. Agricultural Systems, 172, 72–82.

    Google Scholar 

  48. Mekuria, M., & Waddington, S. R. (2002). Initiatives to encourage farmer adoption of soil-fertility Technologies for Maize-based Cropping Systems in southern Africa. In C. B. Barrett, F. Place, & Abdillahi (Eds.), Natural resources Management in African Agriculture: Understanding and improving current practices (pp. 219–234). Wallingford: CABI.

    Google Scholar 

  49. Midega, C. A. O., Salifu, D., Bruce, T. J., Pittchar, J., Pickett, J. A., & Khan, Z. R. (2014). Cumulative effects and economic benefits of intercropping maize with food legumes on Striga hermonthica infestation. Field Crops Research, 155, 144–152.

    Google Scholar 

  50. Midega, C. A., Bruce, T. J., Pickett, J. A., Pittchar, J. O., Murage, A., & Khan, Z. R. (2015). Climate-adapted companion cropping increases agricultural productivity in East Africa. Field Crops Research, 180, 118–125.

  51. Mloza-Banda, H. R., & Kabambe, V. H. (1997). Integrated management of striga control in Malawi. African Crop Science Journal, 5(2), 263–273.

    Google Scholar 

  52. Mungai, L. M., Snapp, S. S., Messina, J. P., Chikowo, R., Smith, A., Anders, E., et al. (2016). Smallholder farms and the potential for sustainable intensification. Frontiers in Plant Science, 7, 1–17.

    Google Scholar 

  53. Musambasi, D., Chivinge, O. A., & Mariga, I. K. (2002). Intercropping maize with grain legumes for Striga control in Zimbabwe. African Crop Science Journal, 10(2), 163–171.

    Google Scholar 

  54. Nahuelhual, L., Loureiro, M. L., & Loomis, J. (2004). Using random parameters to account for heterogeneous preferences in contingent valuation of public open space. Journal of Agricultural and Resource Economics, 29(3), 537–552.

    Google Scholar 

  55. N'cho, S. A., Mourits, M., Rodenburg, J., Demont, M., & Oude Lansink, A. (2014). Determinants of parasitic weed infestation in rainfed lowland rice in Benin. Agricultural Systems, 130, 105–115.

    Google Scholar 

  56. N'cho, S. A., Mourits, M., Rodenburg, J., & Oude Lansink, A. (2019). Inefficiency of manual weeding in rainfed rice systems affected by parasitic weeds. Agricultural Economics (United Kingdom), 50(2), 151–163.

    Google Scholar 

  57. Njuki, J., Kaaria, S., Chamunorwa, A., & Chiuri, W. (2011). Linking smallholder farmers to markets, gender and intra-household dynamics: Does the choice of commodity matter? European Journal of Development Research, 23(3), 426–443.

    Google Scholar 

  58. Orr, A., Kambombo, B., Roth, C., Harris, D., & Doyle, V. (2015). Adoption of integrated food-energy systems: Improved cookstoves and pigeonpea in southern Malawi. Experimental Agriculture, 51(2), 191–209.

    Google Scholar 

  59. Ortega, D. L., Waldman, K. B., Richardson, R. B., Clay, D. C., & Snapp, S. (2016). Sustainable intensification and farmer preferences for crop system attributes: Evidence from Malawi's central and southern regions. World Development, 87, 139–151.

    Google Scholar 

  60. Oswald, A. (2005). Striga control—Technologies and their dissemination. Crop Protection, 24(4), 333–342.

    Google Scholar 

  61. Oswald, A., Ransom, J. K., Kroschel, J., & Sauerborn, J. (2002). Intercropping controls Striga in maize based farming systems. Crop Protection, 21(5), 367–374.

    Google Scholar 

  62. Otsuka, K., Quisumbing, A. R., Payongayong, E., & Aidoo, J. B. (2003). Land tenure and the management of land and trees: The case of customary land tenure areas of Ghana. Environment and Development Economics, 8(1), 77–104.

    Google Scholar 

  63. Parker, C. (2012). Parasitic weeds: A world challenge. Weed Science, 60(2), 269–276.

    CAS  Google Scholar 

  64. Peters, P. E. (2010). Our daughters inherit our land, but our sons use their wives' fields: Matrilineal-matrilocal land tenure and the new land policy in Malawi. Journal of Eastern Africa Studies, 4(1), 179–199.

    Google Scholar 

  65. Pircher, T., Almekinders, C. J., & Kamanga, B. C. (2013). Participatory trials and farmers' social realities: Understanding the adoption of legume technologies in a Malawian farmer community. International Journal of Agricultural Sustainability, 11(3), 252–263.

    Google Scholar 

  66. Place, F., Barrett, C. B., Freeman, H. A., Ramisch, J. J., & Vanlauwe, B. (2003). Prospects for integrated soil fertility management using organic and inorganic inputs: Evidence from smallholder African agricultural systems. Food Policy, 28, 365–378.

    Google Scholar 

  67. Poteete, A. R., Janssen, M. A., & Ostrom, E. (2010). Working together: Collective action, the commons, and multiple methods in practice. Princeton: University Press.

    Google Scholar 

  68. Randrianjafizanaka, M. T., Autfray, P., Andrianaivo, A. P., Ramonta, I. R., & Rodenburg, J. (2018). Combined effects of cover crops, mulch, zero-tillage and resistant varieties on Striga asiatica (L.) Kuntze in rice-maize rotation systems. Agriculture, Ecosystems and Environment, 256, 23–33.

    Google Scholar 

  69. Rigby, D., & Burton, M. (2005). Preference heterogeneity and GM food in the UK. European Review of Agricultural Economics, 32(2), 269–288.

    Google Scholar 

  70. Rockers, P. C., Jaskiewicz, W., Wurts, L., Kruk, M. E., Mgomella, G. S., Ntalazi, F., et al. (2012). Preferences for working in rural clinics among trainee health professionals in Uganda: A discrete choice experiment. BMC Health Services Research, 12(1), 212.

    PubMed  PubMed Central  Google Scholar 

  71. Rusinamhodzi, L., Corbeels, M., Nyamangara, J., & Giller, K. E. (2012). Maize–grain legume intercropping is an attractive option for ecological intensification that reduces climatic risk for smallholder farmers in Central Mozambique. Field Crops Research, 136, 12–22.

    Google Scholar 

  72. Salasya, B., Mwangi, W. M., Mwabu, D., & Diallo, A. (2007). Factors influencing adoption of stress-tolerant maize hybrid (WH 502) in western Kenya. African Journal of Agricultural Research, 2(10), 544–551.

    Google Scholar 

  73. Schut, M., Rodenburg, J., Klerkx, L., Hinnou, L. C., Kayeke, J., & Bastiaans, L. (2015a). Participatory appraisal of institutional and political constraints and opportunities for innovation to address parasitic weeds in rice. Crop Protection, 74, 158–170.

    Google Scholar 

  74. Schut, M., Rodenburg, J., Klerkx, L., Kayeke, J., van Ast, A., & Bastiaans, L. (2015b). RAAIS: Rapid appraisal of agricultural innovation systems (part II). Integrated analysis of parasitic weed problems in rice in Tanzania. Agricultural Systems, 132, 12–24.

    Google Scholar 

  75. Silberg, T. R., Richardson, R. B., Hockett, M., & Snapp, S. S. (2017). Maize-legume intercropping in Central Malawi: Determinants of practice. International Journal of Agricultural Sustainability, 15(6), 662–680.

    Google Scholar 

  76. Sirrine, D., Shennan, C., & Sirrine, J. R. (2010). Comparing agroforestry systems’ ex ante adoption potential and ex post adoption: On-farm participatory research from southern Malawi. Agroforestry Systems, 79, 253–266.

    Google Scholar 

  77. Smith, A., Snapp, S., Dimes, J., Gwenambira, C., & Chikowo, R. (2016). Doubled-up legume rotations improve soil fertility and maintain productivity under variable conditions in maize-based cropping systems in Malawi. Agricultural Systems, 145, 139–149.

    Google Scholar 

  78. Snapp, S. S., & Fisher, M. (2015). “Filling the maize basket” sup- ports crop diversity and quality of household diet in Malawi. Food Security, 7(1), 83–96.

    Google Scholar 

  79. Snapp, S., Jayne, T. S., Mhango, W., & Ricker-Gilbert, J. (2014). Maize yield response to nitrogen in Malawi’s smallholder production systems. Malawi strategy support program. Working Paper 9 (No. 1093-2016-87994). Washington, DC: International Food Policy Research Institute.

  80. StataCorp. (2019). Stata statistical software: Release 15. College Station: StataCorp LLC https://www.stata.com/products/. Accessed January 2019.

  81. Stringer, L. C., Twyman, C., & Thomas, D. S. G. (2007). Learning to reduce degradation on Swaziland's arable land: Enhancing understandings of Striga asiatica. Land Degradation & Development, 18(2), 163–177.

    Google Scholar 

  82. Tamene, L., Mponela, P., Ndengu, G., & Kihara, J. (2015). Assessment of maize yield gap and major determinant factors between smallholder farmers in the Dedza district of Malawi. Nutrient Cycling in Agroecosystems, 105, 1–18.

    Google Scholar 

  83. Teklewold, H., Kassie, M., Shiferaw, B., & Köhlin, G. (2013). Cropping system diversification, conservation tillage and modern seed adoption in Ethiopia: Impacts on household income, agrochemical use and demand for labor. Ecological Economics, 93, 85–93.

    Google Scholar 

  84. Thierfelder, C., & Wall, P. C. (2010). Rotation in conservation agriculture systems of Zambia: Effects on soil quality and water relations. Experimental Agriculture, 46(3), 309–325.

    Google Scholar 

  85. Tippe, D. E., Rodenburg, J., Schut, M., van Ast, A., Kayeke, J., & Bastiaans, L. (2017). Farmers' knowledge, use and preferences of parasitic weed management strategies in rain-fed rice production systems. Crop Protection, 99, 93–107.

    Google Scholar 

  86. Train, K. (2009). Discrete choice methods with simulation. New York: Cambridge University Press.

    Google Scholar 

  87. United Nations. (2014). Malawi country profile”. Resource document. http://www.mw.one.un.org/country-profile/. Accessed September 2018.

  88. Useche, P., Barham, B. L., & Foltz, J. D. (2012). Trait-based adoption models using ex-ante and ex-post approaches. American Journal of Agricultural Economics, 95(2), 332–338.

    Google Scholar 

  89. Vaiknoras, K., Norton, G., & Alwang, J. (2014). Farmer preferences for attributes of conservation agriculture in eastern Uganda. African Journal of Agricultural and Resource Economics, 10(2), 158–173.

    Google Scholar 

  90. VERBI GmbH. (2019). MAXQDA software for qualitative and mixed methods research. Berlin: VERBI Software GmbH https://www.maxqda.com/. Accessed January 2019.

  91. Waldman, K. B., & Richardson, R. B. (2018). Confronting tradeoffs between agricultural ecosystem services and adaptation to climate change in Mali. Ecological Economics, 150, 184–193.

    PubMed  PubMed Central  Google Scholar 

  92. Waldman, K. B., Ortega, D. L., Richardson, R. B., Clay, D. C., & Snapp, S. (2016). Preferences for legume attributes in maize-legume cropping systems in Malawi. Food Security, 8(6), 1087–1099.

    Google Scholar 

  93. Waldman, K. B., Ortega, D. L., Richardson, R. B., & Snapp, S. S. (2017). Estimating demand for perennial pigeon pea in Malawi using choice experiments. Ecological Economics, 131, 222–230.

    PubMed  PubMed Central  Google Scholar 

  94. Ward, P. S., Ortega, D. L., Spielman, D. J., & Singh, V. (2014). Heterogeneous demand for drought-tolerant rice: Evidence from Bihar, India. World Development, 64, 125–139.

    Google Scholar 

  95. Woomer, P. L., Bokanga, M., & Odhiambo, G. D. (2008). Striga management and the African farmer. Outlook on Agriculture, 37(4), 277–282.

    Google Scholar 

  96. Yin, R., Yao, S., & Huo, X. (2013). China's forest tenure reform and institutional change in the new century: What has been implemented and what remains to be pursued? Land Use Policy, 30(1), 825–833.

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge input from Drs. Vincenzina Caputo and Tim Guetterman as well as Chilungamo Banda, Cyprian Mwale, the agricultural extension development officers of Malawi and the Chitedze Agricultural Research Station community. In addition, figure graphics were contributed by the work of Dr. Brad Peter and Mr. André Pires. This research was made possible with support from the United States Agency for International Development (USAID) through its programs, Africa Research in Sustainable Intensification for the Next Generation (Africa RISING) and the Borlaug Fellows in Global Food Security. The MAXQDA Research Software Company provided additional support through its #ResearchForChange grant. Finally, additional support was provided through a research fellowship from the Michigan State University Gender, Justice and Environmental Change program. Any errors or omissions are those of the authors.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Timothy R. Silberg.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 18 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Silberg, T.R., Richardson, R.B. & Lopez, M.C. Maize farmer preferences for intercropping systems to reduce Striga in Malawi. Food Sec. 12, 269–283 (2020). https://doi.org/10.1007/s12571-020-01013-2

Download citation

Keywords

  • Intercropping
  • Legumes
  • Striga
  • Gender
  • Choice experiments
  • Malawi