Advertisement

In search of alternative proteins: unlocking the potential of underutilized tropical legumes

  • Acga ChengEmail author
  • Murthazar Naim Raai
  • Nurul Amalina Mohd Zain
  • Festo Massawe
  • Ajit Singh
  • Wan Abd Al Qadr Imad Wan-Mohtar
Review

Abstract

Protein is one of the essential nutrients required for almost every task of a human’s cellular life. Severe protein malnutrition, which can cause a fatal outcome, is the leading cause of death for infants and children in many African and Asian countries that have little to no access to complete proteins. Complete proteins, which contain all nine amino acids essential for human health, are usually found in animal-based foods such as meat and dairy products. The overconsumption of animal-based proteins, however, can potentially increase the risk of diet-related chronic diseases. Recent years have witnessed enhanced awareness about the health benefits of substituting animal-based proteins with plant-based proteins, especially in developed countries. Nitrogen-fixing grain legumes are considered important sources of protein in many developing countries because they are generally cheaper than meat or cereals. Extensive research has been conducted on several well-known legumes, notably soybean, which is the most economically important legume worldwide. Nevertheless, many lesser-known legumes with similar nutritional properties to soybean are still underdeveloped, including winged bean, lentil, lima bean, lablab, and bambara groundnut, which are commonly grown in the tropics. Only now are these species receiving more scientific attention. This review highlights the potential of these tropical legumes as future major sources of plant-based proteins, along with the critical research areas for their improvement. We provide insights into how these underutilized legumes could help resolve the global protein crisis and address food insecurity issues.

Keywords

Alternative proteins Food security Nitrogen-fixing crops Nutrition Plant-based proteins Underutilized legumes 

Notes

Acknowledgements

This work was supported by the University of Malaya and the Ministry of Education, Malaysia (Project Numbers: BK070-2017 and FP018-2018A]. The funders had no role in the preparation of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

References

  1. Abate, T., Alene, A. D., Bergvinson, D., Shiferaw, B., Silim S, Orr A., et al. (2012). Tropical grain legumes in Africa and South Asia: Knowledge and opportunities. PO Box 39063, Nairobi, Kenya: International crops research Institute for the Semi-Arid Tropics, 112.Google Scholar
  2. Adeleke, O. R., Adiamo, O. Q., & Fawale, O. S. (2017). Nutritional, physicochemical, and functional properties of protein concentrate and isolate of newly-developed Bambara groundnut (Vigna subterrenea L.) cultivars. Food Science and Nutrition, 6(1), 229–242.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Ade-Omowaye, B. I. O., Tucker, G. A., & Smetanska, I. (2015). Nutritional potential of nine underexploited legumes in Southwest Nigeria. International Food Research Journal, 22(2), 798–806.Google Scholar
  4. Akibode, S., & Maredia, M. (2011). Global and regional trends in production, trade and consumption of food legume crops. Department of Agricultural, Food and Resource Economics: Michigan State University.Google Scholar
  5. Almeida, C., & Pedrosa-Harand, A. (2013). High macro-collinearity between lima bean (Phaseolus lunatus L.) and the common bean (P. vulgaris L.) as revealed by comparative cytogenetic mapping. Theoretical and Applied Genetics, 126, 1909–1916.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Amarowicz, R., & Pegg, R. B. (2008). Legumes as a source of natural antioxidants. European Journal of Lipid Science and Technology, 110(10), 865–878.CrossRefGoogle Scholar
  7. Amarowicz, R., Estrella, I., Hernandez, T., Robredo, S., Troszynska, A., Kosinska, A., et al. (2010). Free radical-scavenging capacity, antioxidant activity, and phenolic composition of green lentil (Lens culinaris). Food Chemistry, 121(3), 705–711.CrossRefGoogle Scholar
  8. Andrews, M., & Andrews, M. E. (2017). Specificity in legume-rhizobia symbioses. International Journal of Molecular Sciences, 18(4).Google Scholar
  9. Araújo, S. S., Beebe, S., Crespi, M., Delbreil, B., Gonzalez, E. M., Gruber, V., et al. (2015). Abiotic stress responses in legumes: Strategies used to cope with environmental challenges. Critical Reviews in Plant Sciences, 34(13), 237–280.CrossRefGoogle Scholar
  10. Aremu, M. O., Olaofe, O., & Akintayo, T. E. (2006). Chemical composition and physicochemical characteristics of two varieties of bambara groundnut (Vigna subterrenea) flours. Journal of Applied Sciences, 6(9), 1900–1903.CrossRefGoogle Scholar
  11. Arise, A. K., Alashi, A. M., Nwachukwu, I. D., Malomo, S. A., Aluko, R. E., & Amonsou, E. O. (2017). Inhibitory properties of bambara groundnut protein hydrolysate and peptide fractions against angiotensin-converting enzymes, renin and free radicals. Journal of the Science of Food and Agriculture, 97(9), 2834–2841.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Arumuganathan, K., & Earle. (1991). Nuclear DNA content of some important plant species. Journal of Plant Molecular Biology, 9(3), 208–218.CrossRefGoogle Scholar
  13. Azam-Ali, S., Sesay, A., Karikari, S., Massawe, F., Aguilar-Manjarrez, J., Bannayan, M., et al. (2001). Assessing the potential of an underutilized crop–a case study using bambara groundnut. Journal of Experimental Agriculture, 37(4), 433–472.CrossRefGoogle Scholar
  14. Ballhorn, D. J., Kautz, S., Heil, M., & Hegeman, A. D. (2009). Cyanogenesis of wild lima bean (Phaseolus lunatus L.) is an efficient direct defence in nature. PLoS One, 4(5), e5450.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Baudoin, J.-P., Rocha, O., Degreef, J., Maquet, A., & Guarino, L. (2006). Phaseolus lunatus L. Plant Resources of Tropical Africa, 1, 141–146.Google Scholar
  16. Bazzano, L. A., Thompson, A. M., Tees, M. T., Nguyen, C. H., & Winham, D. M. (2011). Non-soy legume consumption lowers cholesterol levels: A meta-analysis of randomized controlled trials. Nutrition, Metabolism and Cardiovascular Diseases, 21(2), 94–103.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Becerra-Tomás, N., Diaz-Lopez, A., Rosique-Esteban, N., Ros, E., Buil-Cosiales, P., Corella, D., et al. (2018). Legume consumption is inversely associated with type 2 diabetes incidence in adults: A prospective assessment from the PREDIMED study. Clinical Nutrition, 37(3), 906–913.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Black, R. E., Victora, C. G., Walker, S. P., Bhutta, Z. A., Christian, P., de Onis, M., et al. (2013). Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet, 382(9890), 427–451.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Bonaccorsi, G. (2015). Food and human behaviour: Consumption, waste and sustainability. Journal of Public Health Research, 4(2), 606.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Calles, T. (2016). The international year of pulses: What are they and why are they important. Agriculture for Development, 26, 40–42.Google Scholar
  21. Cameron, D. G. (1988). Tropical and subtropical pasture legumes. Lablab bean (Lablab purpureus): The major leguminous forage crop. Queensland Agricultural Journal, 114, 110–113.Google Scholar
  22. Capstaff, N. M., & Miller, A. J. (2018). Improving yield and nutritional quality of forage crops. Frontiers in Plant Science, 9, 535.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Cerny, K., & Addy, H. A. (1973). The winged bean (Psophocarpus palustris Desv.) in the treatment of kwashiorkor. British Journal of Nutrition, 29(1), 105–112.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Chacón-Sánchez, M. I., & Martínez-Castillo, J. (2017). Testing domestication scenarios of lima bean (Phaseolus lunatus L.) in Mesoamerica: Insights from genome-wide genetic markers. Frontiers in Plant Science, 8, 1551.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Chai, H. H., Massawe, F., & Mayes, S. (2016). Effects of mild drought stress on the morpho-physiological characteristics of a bambara groundnut segregating population. Euphytica, 208(2), 225–236.CrossRefGoogle Scholar
  26. Chapman, M. A. (2015). Transcriptome sequencing and marker development for four underutilized legumes. Applications in Plant Science, 3(2).CrossRefGoogle Scholar
  27. Cheng, A. (2018). Shaping a sustainable food future by rediscovering long-forgotten ancient grains. Plant Science, 269, 136–142.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Cheng, A., Chai, H. H., Ho, W. K., Bamba, A. S. A., Feldman, A., Kendabie, P., et al. (2017). Molecular marker technology for genetic improvement of underutilised crops. In S. Abdullah, H. Chai-Ling, & C. Wagstaff (Eds.), Crop improvement (pp. 47–70). Cham: Springer.CrossRefGoogle Scholar
  29. Cohen, A. L., & Crowder, D. W. (2017). The impacts of spatial and temporal complexity across landscapes on biological control: A review. Current Opinion in Insect Science, 20, 13–18.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Dansi, A., Vodouhe, R., Azokpota, P., Yedomonhan, H., Assogba, P., Adjatin, A., et al. (2012). Diversity of the neglected and underutilized crop species of importance in Benin. Scientific World Journal, 2012, 932947.PubMedCrossRefPubMedCentralGoogle Scholar
  31. De Gavelle, E., Huneau, J. F., Bianchi, C. M., Verger, E. O., & Mariotti, F. (2017). Protein adequacy is primarily a matter of protein quantity, not quality: Modeling an increase in plant:Animal protein ratio in French adults. Nutrients, 9, 1333.PubMedCentralCrossRefGoogle Scholar
  32. De Jager, I., Abizari, A., Douma, J. C., Giller, K. E., & Brouwer, I. D. (2017). Grain legume cultivation and children’s dietary diversity in smallholder farming households in rural Ghana and Kenya. Food Security, 9(5), 1053–1071.CrossRefGoogle Scholar
  33. Delgado, C. L. (2003). Rising consumption of meat and milk in developing countries has created a new food revolution. The Journal of Nutrition, 133(11), 3907–3910.CrossRefGoogle Scholar
  34. Dheer, M., Sharma, R. A., Gupta, V. P., & Punia, S. S. (2014). Cytomorphological investigations in colchicine-induced polyploids of Lablab purpureus (L.) sweet. Indian Journal of Biotechnology, 13, 347–355.Google Scholar
  35. Dhillon, P. K., & Tanwar, B. (2018). Rice bean: A healthy and cost-effective alternative for crop and food diversity. Food Security, 10(3), 525–535.CrossRefGoogle Scholar
  36. Dita, M. A., Rispail, N., Prats, E., Rubiales, D., & Singh, K. B. (2006). Biotechnology approaches to overcome biotic and abiotic stress constraints in legumes. Euphytica, 147, 12.CrossRefGoogle Scholar
  37. Dwivedi, S. L., Lammerts van Bueren, E. T., Ceccarelli, S., Grando, S., Upadhyaya, H. D., & Ortiz, R. (2017). Diversifying food systems in the pursuit of sustainable food production and healthy diets. Trends in Plant Science, 10, 842–856.CrossRefGoogle Scholar
  38. Ebert, A. W. (2014). Potential of underutilized traditional vegetables and legume crops to contribute to food and nutritional security, income and more sustainable production systems. Sustainability, 6(1), 319–335.CrossRefGoogle Scholar
  39. Erskine, W., Sarker, A., & Kumar, S. (2011). Crops that feed the world 3. Investing in lentil improvement toward a food secure world. Food Security, 3, 127–139.CrossRefGoogle Scholar
  40. FAO, (2013). The state of food insecurity in the world. The multiple dimensions of food security. Rome, FAO.Google Scholar
  41. FAO (2018). FAO, IFAD, UNICEF, WFP and WHO. 2018. The state of food security and nutrition in the world 2018. Building climate resilience for food security and nutrition. Rome, FAO.Google Scholar
  42. Fisher, C. G., & Garnett, T. (2016). Plates, pyramids, planet developments in national healthy and sustainable dietary guidelines: A state of play assessment. Rome: FAO.Google Scholar
  43. Fox, N., & Ward, K. J. (2008). You are what you eat? Vegetarianism, health and identity. Social Science and Medicine, 66(12), 2585–2595.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Foyer, C. H., Nguyen, H., & Lam, H. M. (2019). Legumes - the art and science of environmentally sustainable agriculture. Plant, Cell, and Environment, 42(1), 1–15.CrossRefGoogle Scholar
  45. Ganesan, K., & Xu, B. (2017). Polyphenol-rich lentils and their health promoting effects. International Journal of Molecular Sciences., 18(11), 2390.PubMedCentralCrossRefGoogle Scholar
  46. Gepts, P., Beavis, W. D., Brummer, E. C., Shoemaker, R. C., Stalker, H. T., Weeden, N. F., et al. (2005). Legumes as a model plant family. Genomics for food and feed report of the cross-legume advances through genomics conference. Plant Physiology, 137(4), 1228–1235.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Godfray, H. C., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., et al. (2010). Food security: The challenge of feeding 9 billion people. Science, 327(5967), 812–818.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Gonné, S., Félix-Alain, W., & Benoît, K. B. (2013). Assessment of twenty bambara groundnut (Vigna subterranea (L.) Verdcourt) landraces using quantitative morphological traits. International Journal of Plant Research, 3(3), 39–45.Google Scholar
  49. Gorissen, S., Crombag, J., Senden, J., Waterval, W., Bierau, J., Verdijk, L. B., & van Loon, L. (2018). Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids, 50(12), 1685–1695.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Hancock, J. F. (2012). Plant evolution and the origin of crop species. CABI. 245 pp.Google Scholar
  51. Heller, J. (1997). Bambara groundnut: Vigna subterranea (l.) Verdc. Promoting the conservation and use of under-utilized and neglected crops, Zimbabwe. IPGRI.Google Scholar
  52. Henchion, M., Hayes, M., Mullen, A. M., Fenelon, M., & Tiwari, B. (2017). Future protein supply and demand: Strategies and factors influencing a sustainable equilibrium. Foods, 6(7), 53.PubMedCentralCrossRefGoogle Scholar
  53. Herforth, A., & Ahmed, S. (2015). The food environment, its effects on dietary consumption, and potential for measurement within agriculture-nutrition interventions. Food Security, 7(3), 505–520.CrossRefGoogle Scholar
  54. Hossain, S., Ahmed, R., Bhowmick, S., Mamun, A. A., & Hashimoto, M. (2016). Proximate composition and fatty acid analysis of Lablab purpureus (L.) legume seed: Implicates to both protein and essential fatty acid supplementation. Springerplus, 5(1), 1899.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Hughes, G. J., Kress, K. S., Armbrecht, E. S., Mukherjea, R., & Mattfeldt-Beman, M. (2014). Initial investigation of dietitian perception of plant-based protein quality. Food Science and Nutrition, 2(4), 371–379.PubMedCrossRefPubMedCentralGoogle Scholar
  56. Hymowitz, T., & Boyd, J. (1977). Origin, ethnobotany and agricultural potential of the winged bean - Psophocarpus tetragonolobus. Economic Botany, 31(2), 180–188.CrossRefGoogle Scholar
  57. Ibrahim, M. A. R., Dorina, M., & Abdelrazek, I. (2014). How rural agricultural development projects (animal production) can use projects benefits for improving the economics states of farmers. Proceedia Economics and Finance, 8, 484–489.CrossRefGoogle Scholar
  58. Jaffe, W. G., & Korte, R. (1976). Nutritional characteristics of the winged bean in rats. Nutrition Reports International, 14(4), 449–455.Google Scholar
  59. Jayalath, V. H., de Souza, R. J., Sievenpiper, J. L., Ha, V., Chiavaroli, L., Mirrahimi, A., et al. (2014). Effect of dietary pulses on blood pressure: A systematic review and meta-analysis of controlled feeding trials. American Journal of Hypertension, 27(1), 56–64.PubMedCrossRefPubMedCentralGoogle Scholar
  60. Jenkins, D. J., Kendall, C. W., Augustin, L. S., Mitchell, S., Sahye-Pudaruth, S., Blanco Mejia, S., et al. (2012). Effect of legumes as part of a low glycemic index diet on glycemic control and cardiovascular risk factors in type 2 diabetes mellitus: A randomized controlled trial. Archives of Internal Medicine, 172(21), 1653–1660.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Johnson, C. R., Thavarajah, D., Combs, G. F., Jr., & Thavarajah, P. (2013). Lentil (Lens culinaris L.): A prebiotic-rich whole food legume. Food Research International, 51, 107–113.CrossRefGoogle Scholar
  62. Joyce, A., Dixon, S., Comfort, J., & Hallet, J. (2012). Reducing the environmental impact of dietary choice: Perspectives from a behavioural and social change approach. Journal of Environmental and Public Health, 2012, 1–7.CrossRefGoogle Scholar
  63. Kadam, S. S., Salunkhe, D. K., & Luh, B. S. (1984). Winged bean in human nutrition. C R C Critical Reviews in Food Science and Nutrition, 21(1), 1–40.CrossRefGoogle Scholar
  64. Karkute, S. G., Singh, A. K., Gupta, O. P., Singh, P. M., & Singh, B. (2017). CRISPR/Cas9 mediated genome engineering for improvement of horticultural crops. Frontiers in Plant Science, 8, 1635.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Kay, D. E. (1979). Hyacinth bean - food legumes. Crop and product digest no. 3. Tropical Products Institute, xvi, 184–196.Google Scholar
  66. Khan, T. N. (1976). Papua New Guinea: A Centre of genetic diversity in winged bean (Psophocarpus tetragonologus (L.) DC.). Euphytica, 25, 693–706.CrossRefGoogle Scholar
  67. Khorramdelazad, M., Bar, I., Whatmore, P., Smetham, G., Bhaaskaria, V., Yang, Y., et al. (2018). Transcriptome profiling of lentil (Lens culinaris) through the first 24 hours of Ascochyta lentis infection reveals key defence response genes. BMC Genomics, 19(1), 108.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Kumar, J., Thavarajah, D., Kumar, S., Sarker, A., & Singh, N. P. (2018). Analysis of genetic variability and genotype × environment interactions for iron and zinc content among diverse genotypes of lentil. Journal of Food Science and Technology, 55(9), 3592–3605.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Lacerda, R. R., do Nascimento, E. S., de Lacerda, J. T. J. G., da Silva, P. L., Rizzi, C., Bezerra, M. M., et al. (2017). Lectin from seeds of a Brazilian lima bean variety (Phaseolus lunatus L. var. cascavel) presents antioxidant, antitumour and gastroprotective activities. International Journal of Biological Macromolecules, 95, 1072–1081.PubMedCrossRefPubMedCentralGoogle Scholar
  70. Lepcha, P., Egan, A. N., Doyle, J. J., & Sathyanarayana, N. (2017). A review on current status and future prospects of winged bean (Psophocarpus tetragonolobus) in tropical agriculture. Plant Foods for Human Nutrition, 72(3), 225–235.PubMedCrossRefPubMedCentralGoogle Scholar
  71. Lewis, G. P. (2005). Legumes of the world. Royal Botanic Gardens Kew.Google Scholar
  72. Li, J., & Mao, Q. Q. (2017). Legume intake and risk of prostate cancer: A meta-analysis of prospective cohort studies. Oncotarget, 8(27), 44776–44784.PubMedPubMedCentralGoogle Scholar
  73. Li, F., Cao, D., Liu, Y., Yang, T., & Wang, G. (2015). Transcriptome sequencing of lima bean (Phaseolus lunatus) to identify putative positive selection in legumes. International Journal of Molecular Sciences, 16(7), 15172–15187.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Lonnie, M., Hooker, E., Brunstrom, J. M., Corfe, B. M., Green, M. A., Watson, A. W., et al. (2018). Protein for life: Review of optimal protein intake, sustainable dietary sources and the effect on appetite in ageing adults. Nutrients, 10, 360.PubMedCentralCrossRefGoogle Scholar
  75. Maass, B. L., Robotham, O., & Chapman, M. A. (2016). Evidence for two domestication events of hyacinth bean (Lablab purpureus (L.) sweet): A comparative analysis of population genetic data. Genetic Resources and Crop Evolution, 64(6), 1221–1230.CrossRefGoogle Scholar
  76. Mabhaudhi, T., Chibarabada, T. P., Chimonyo, V. G. P., Murugani, V. G., Pereira, L. M., Sobratee, N., et al. (2019). Mainstreaming underutilized indigenous and traditional crops into food systems: A south African perspective. Sustainability, 11, 172.CrossRefGoogle Scholar
  77. Maphosa, Y., & Jideani, V. A. (2017). The role of legumes in human nutrition. Functional food - improve health through adequate food. IntechOpen.Google Scholar
  78. Massawe, F., Mayes, S., & Cheng, A. (2016). Crop diversity: An unexploited treasure trove for food security. Trends in Plant Science, 21(5), 365–368.PubMedCrossRefPubMedCentralGoogle Scholar
  79. Messina, M. J. (1999). Legumes and soybeans: Overview of their nutritional profiles and health effects. The American Journal of Clinical Nutrition, 70(3), 439–450.CrossRefGoogle Scholar
  80. Mubaiwa, J., Fogliano, V., Chidewe, C., & Linnemann, A. R. (2018). Bambara groundnut (Vigna subterranea (L.) Verdc.) flour: A functional ingredient to favour the use of an unexploited sustainable protein source. PLoS One, 13(10), e0205776.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Muhammad, Y. Y., Mayes, S., & Massawe, F. (2016). Effects of short-term water deficit stress on physiological characteristics of Bambara groundnut (Vigna subterranea (L.) Verdc.). South African Journal of Plant Soil & Tillage Research, 33(1), 51–58.CrossRefGoogle Scholar
  82. Murphy, A. M., & Colucci, P. E. (1999). A tropical forage solution to poor quality ruminant diets: A review of Lablab purpureus. Livestock Research for Rural Development, 11(2), 1999.Google Scholar
  83. Musa, M., Massawe, F., Mayes, S., Alshareef, I., & Singh, A. (2016). Nitrogen fixation and N-balance studies on bambara groundnut (Vigna subterranea L. Verdc) landraces grown on tropical acidic soils of Malaysia. Communications in Soil Science and Plant Analysis, 47(4), 533–542.Google Scholar
  84. National Research Council (US) (1975). The winged bean: a high-protein crop for the tropics (second edition). Washington, D.C. National Academies.Google Scholar
  85. Nwokolo, E. (1996). Lima bean (Phaseolus lunatus L.). In E. Nwokolo & J. Smartt (Eds.), Food and feed from legumes and Oilseeds. Boston: Springer.CrossRefGoogle Scholar
  86. Padulosi, S., Hodgkin, T., Williams, J.T., & Haq, N. (2002). Underutilised crops: trends, challenges and opportunities in the twenty-first Century. In: Engels, J., Rao, V. R., & Jackson, M. (eds.). Managing plant genetic diversity. CAB International, 323–338 pp.Google Scholar
  87. Padulosi, S., Heywood, V., Hunter, D., & Jarvis, A. (2011). Underutilized species and climate change: Current status and outlook. Crop Adaptation to Climate Change, 507–521.Google Scholar
  88. Parmar, A. M., Singh, A. P., Dhillon, N. P. S., & Jamwal, M. (2013). Genetic variability of morphological and yield traits in Dolichos bean (Lablab purpureus L.). African Journal of Agricultural Research, 8(12), 1022–1027.CrossRefGoogle Scholar
  89. Pighin, D., Pazos, A., Chamorro, V., Paschetta, F., Cunzolo, S., Godoy, F., et al. (2016). A contribution of beef to human health: A review of the role of the animal production systems. The Scientific World Journal, 2016, 1–10.CrossRefGoogle Scholar
  90. Pimentel, D., & Pimentel, M. (2003). Sustainability of meat-based and plant-based diets and the environment. The American Journal of Clinical Nutrition, 78(3), 660–663.CrossRefGoogle Scholar
  91. Polak, R., Phillips, E. M., & Campbell, A. (2015). Legumes: Health benefits and culinary approaches to increase intake. Clinical Diabetes, 33(4), 198–205.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Rahman, M. M., Islam, A. M., Azirun, S. M., & Boyce, A. N. (2014). Tropical legume crop rotation and nitrogen fertilizer effects on agronomic and nitrogen efficiency of rice. The Scientific World Journal, 490, 841–490,841.Google Scholar
  93. Rao, S., Chinkwo, K., Santhakumar, A., & Blanchard, C. (2018). Inhibitory effects of pulse bioactive compounds on cancer development pathways. Diseases, 6(3), 72.PubMedCentralCrossRefGoogle Scholar
  94. Robotham, O., & Chapman, M. (2017). Population genetic analysis of hyacinth bean (Lablab purpureus (L.) Sweet, Leguminosae) indicates an East African origin and variation in drought tolerance. Genetic Resources and Crop Evolution, 64(1), 139–148.CrossRefGoogle Scholar
  95. Ruiz, R. G., Price, K. R., Arthur, A. E., Rose, M. E., Rhodes, M. J. C., & Fenwick, R. G. (1996). Effect of soaking and cooking on the saponin content and composition of chickpeas (Cicer arietinum) and lentils (Lens culinaris). Journal of Agricultural and Food Chemistry, 44(6), 1526–1530.CrossRefGoogle Scholar
  96. Rumpold, B. A., & Schluter, O. K. (2013). Potential and challenges of insects as an innovative source for food and feed production. Innovative Food Science & Emerging Technologies, 17, 1–11.CrossRefGoogle Scholar
  97. Rungnoi, O., Suwanprasert, J., Somta, P., & Srinives, P. (2012). Molecular genetic diversity of bambara groundnut (Vigna subterranea L. Verdc.) revealed by RAPD and ISSR marker analysis. SABRAO Journal of Breeding and Genetics, 44, 87–101.Google Scholar
  98. Samac, D. A., & Graham, M. A. (2007). Recent advances in legume-microbe interactions: recognition, defense response, and symbiosis from a genomic perspective. Plant physiology, 144(2), 582–587.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Sankaran, S., Khot, L. R., Quiros, J., Vandemark, G. J., & McGee, R. J. (2016). UAV-based high-throughput phenotyping in legume crops. Proceeding SPIE 9866, Autonomous Air and Ground Sensing Systems for Optimization and Phenotyping.  https://doi.org/10.1117/12.2228550.
  100. Seidu, K. T., Osundahunsi, O., Olaleye, M., & Oluwalana, I. (2014). Chemical composition, phytochemical constituents and antioxidant potentials of lima bean seeds coat. Annual Review of Food Science and Technology, 15, 288–298.Google Scholar
  101. Shaahu, D. K., Kaankuka, F. G., & Okpanachi, U. (2015). Proximate, amino acid, anti-nutritional factor and mineral composition of different varieties of raw lablab purpureus seeds. International Journal of Scientific and Technology Research, 4(4), 157–161.Google Scholar
  102. Sharma, R., Nguyen, T. T., & Grote, U. (2018). Changing consumption patterns - drivers and the environmental impact. Sustainability, 10, 4190.CrossRefGoogle Scholar
  103. Siddhuraju, P., Makkar, H. P. S., & Becker, K. (2002). The effect of ionising radiation on antinutritional factors and the nutritional value of plant materials with reference to human and animal food. Food Chemistry, 78(2), 187–205.CrossRefGoogle Scholar
  104. Singh, M. (2018). Lentils: Potential resources for enhancing genetic gains. Academic Press.Google Scholar
  105. Singh, K. M., & Singh, A. (2014). Lentil in India: An overview. Germany: University Library of Munich.Google Scholar
  106. Singh, B., Singh, J. P., Shevkani, K., Singh, N., & Kaur, A. (2017a). Bioactive constituents in pulses and their health benefits. Journal of Food Science and Technology, 54(4), 858–870.PubMedCrossRefPubMedCentralGoogle Scholar
  107. Singh, A., Sharma, V. K., Dikshit, H. K., Singh, D., Aski, M., Prakash, P., et al. (2017b). Microsatellite marker-based genetic diversity analysis of elite lentil lines differing in grain iron and zinc concentration. Journal of Plant Biochemistry and Biotechnology, 26(2), 199–207.CrossRefGoogle Scholar
  108. Stagnari, F., Maggio, A., Galieni, A., & Pisante, M. (2017). Multiple benefits of legumes for agriculture sustainability: an overview. Chemical and Biological Technologies in Agriculture, 4(2).Google Scholar
  109. Tiwari, N., Ahmed, S., Kumar, S., & Sarker, A. (2018). Fusarium wilt: a killer disease of lentil. In: Fusarium-plant diseases, pathogen diversity, genetic diversity, resistance and molecular markers. IntechOpen.Google Scholar
  110. USDA Food Composition Database. (2019) https://ndb.nal.usda.gov/ndb/
  111. Vatanparast, M., Shetty, P., Chopra, R., Doyle, J. J., Sathyanarayana, N., & Egan, A. N. (2016). Transcriptome sequencing and marker development in winged bean (Psophocarpus tetragonolobus; Leguminosae). Scientific Reports, 6, 29070.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Waldman, K. B., Ortega, D. L., Richardson, R. B., Clay, D. C., & Snapp, S. (2016). Preferences for legume attributes in maize-legume cropping systems in Malawi. Food Security, 8(6), 1087–1099.CrossRefGoogle Scholar
  113. Wang, Y., Wang, Z., Fu, L., Chen, Y., & Fang, J. (2013). Legume consumption and colorectal adenoma risk: a meta-analysis of observational studies. PloS one, 8(6), e67335.PubMedPubMedCentralCrossRefGoogle Scholar
  114. Wang, L., Wang, L., Zhou, Y., & Duanmu, D. (2017). Use of CRISPR/Cas9 for symbiotic nitrogen fixation research in legumes. Progress in Molecular Biology and Translational Science, 149, 187–213.PubMedCrossRefPubMedCentralGoogle Scholar
  115. Wang, Q., Liu, J., & Zhu, H. (2018). Genetic and molecular mechanisms underlying symbiotic specificity in legume-rhizobium interactions. Frontiers in Plant Science, 9, 313.PubMedPubMedCentralCrossRefGoogle Scholar
  116. Waters-Bayer, A., & Bayer, W. (1992). The role of livestock in rural economy. Nomadic Peoples, 31, 3–18.Google Scholar
  117. Wong, Q. N., Massawe, F., & Mayes, S. (2015). Improving winged bean (Psophocarpus tetragonolobus) productivity: an analysis of the determinants of productivity. Acta Horticulturae.  https://doi.org/10.17660/ActaHortic.2015.1102.9
  118. Yang, T. C., Sahota, P., Pickett, K. E., & Bryant, M. (2018a). Association of food security status with overweight and dietary intake: exploration of White British and Pakistani-origin families in the Born in Bradford cohort. Nutrition Journal, 17(1), 48.PubMedPubMedCentralCrossRefGoogle Scholar
  119. Yang, S., Grall, A., & Chapman, M. A. (2018b). Origin and diversification of winged bean (Psophocarpus tetragonolobus (L.) DC.), a multipurpose underutilized legume. American Journal of Botany, 105(5).Google Scholar
  120. Yao, D. N., Kouassi, K. N., Erba, D., Scazzina, F., Pellegrini, N., & Casiraghi, M. C. (2015). Nutritive evaluation of the bambara groundnut Ci12 landrace [Vigna subterranea (L.) Verdc. (Fabaceae)] produced in Côte d’Ivoire. International Journal of Molecular Sciences, 16(9), 21,428–21,441.CrossRefGoogle Scholar
  121. Zhang, B., Deng, Z., Tang, Y., Chen, P., Liu, R., Ramdath, D. D., et al. (2014). Fatty acid, carotenoid and tocopherol compositions of 20 Canadian lentil cultivars and synergistic contribution to antioxidant activities. Food Chemistry, 161, 296–304.PubMedCrossRefPubMedCentralGoogle Scholar
  122. Zheng, Z., Henneberry, S. R., Zhao, Y., & Gao, Y. (2015). Income growth, urbanization, and food demand in China. In: 2015 AAEA & WAEA Joint Annual Meeting, California.Google Scholar
  123. Zhou, J. F., Pavek, M. J., Shelton, S. C., Holden, Z. J., & Sankaran, S. (2016). Aerial multispectral imaging for crop hail damage assessment in potato. Computers and Electronics in Agriculture, 127, 406–412.CrossRefGoogle Scholar
  124. Zohary, D. (1972). The wild progenitor and the place of origin of the cultivated lentil Lens culinaris. Economic Botany, 26, 326–332.CrossRefGoogle Scholar
  125. Zohary, D. (1999). Monophyletic vs. polyphyletic origin of the crops on which agriculture was founded in the Near East. Genetic Resources and Crop Evolution, 46(2), 133–142.CrossRefGoogle Scholar

Copyright information

© International Society for Plant Pathology and Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute of Biological Sciences, Faculty of ScienceUniversity of MalayaKuala LumpurMalaysia
  2. 2.School of BiosciencesUniversity of Nottingham MalaysiaSemenyihMalaysia

Personalised recommendations