Skip to main content

Climate change, food security, and future scenarios for potato production in India to 2030

Abstract

Much of the literature on future food supply in Asia focuses almost exclusively on the cereal crops overlooking the growing importance of other food commodities and their potential to help sustain Asian food systems and food security in the decades ahead. This study utilizes a multi-period, agricultural partial equilibrium economic model, linked with a set of crop, climate and water models to estimate potato supply in India for the period 2010 to 2030 according to three scenarios: high, moderate, and slow growth. According to the high growth scenario, potato supply could increase over 37 million metric tonnes while the more pessimistic scenario estimates increases in production of nearly 24 million metric tonnes. The findings point to opportunities for agribusiness initiatives in input markets and technical services for potato cultivation. They also call attention to the benefits to be derived from policy initiatives in support of future activities on and off the farm intended to optimize the potato sector’s contribution to food production, income, employment, and food security in India in the years ahead.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. 1.

    Robinson et al. (2015) provides more information about how these climate models integrate with IMPACT.

References

  1. Alexandratos, N., & Bruinsma, J. (2012). World agriculture: Towards 2030/2050. The 2012 revision. ESA working paper no 12, 03. Rome: Agricultural Development Economics Division, Food and Agriculture Organization of the United Nations.

    Google Scholar 

  2. Anonymous. (1995). Potatoes in the 1990s: Situation and prospects of the world potato economy. Rome: Food and Agriculture Organization of the United Nations in collaboration with the International Potato Center.

    Google Scholar 

  3. Anonymous. (2017). Agricultural statistics at a glance 2016. Delhi: Directorate of Economics and Statistics, Department of Agriculture, Cooperation & Farmers Welfare, Ministry of Agriculture and Farmers Welfare.

    Google Scholar 

  4. Bardhan, R. S. K., Walker, T. S., Khatana, V. S., Saha, N. K., Verma, V. S., Kadian, M. S., Haverkort, A. J., & Bowen, M. T. (1999). Intensification of potatoes in rice-based cropping systems: A rapid appraisal in West Bengal. Social science department working paper no 1999-1. Lima: International Potato Center.

    Google Scholar 

  5. Bentsen, M., Bethke, I., Debernard, J. B., Iversen, T., Kirkevåg, A., Seland, Ø., Drange, H., Roelandt, C., Seierstad, I. A., Hoose, C., & Kristjánsson, J. E. (2013). The Norwegian earth system model, NorESM1-M – Part 1: Description and basic evaluation of the physical climate. Geoscientific Model Development Discussion, 6, 687–720.

    Article  Google Scholar 

  6. Birch, P. R. J., Bryan, G., Fenton, B., Gliroy, E. M., Hen, I., Jones, J. T., Prushnar, A., Taylor, M. A., Torrance, L., & Toth, I. K. (2012). Crops that feed the world 8: Potato: Are the trends of increased global potato production sustainable? Food Security, 4, 477–508.

    Article  Google Scholar 

  7. Chitchumroonchokchai, C., Diretto, G., Parisi, B., Giuliano, G., & Failla, M. L. (2017). Potential of golden potatoes to improve vitamin A and vitamin E status in developing countries. PLoS One, 12(11), e0187102.

    PubMed  PubMed Central  Article  Google Scholar 

  8. CPRI (Central Potato Research Institute). (1997). Vision-2020. Shimla: CPRI.

    Google Scholar 

  9. CPRI (Central Potato Research Institute). (2011). Vision-2030. Shimla: CPRI.

    Google Scholar 

  10. CPRI (Central Potato Research Institute). (2015). Vision-2050. Shimla: CPRI.

    Google Scholar 

  11. Das, M., Sharma, A., & Babu, S. C. (2018). Pathways from agriculture-to-nutrition in India: Implications for sustainable development goals. Food Security. https://doi.org/10.1007/s12571-018-0858-4.

  12. Dua, V. K., Singh, B. P., Kumar, S., & Lal, S. S. (2015). Impact of climate change on potato productivity in Uttar Pradesh and adaption strategies. Potato Journal, 42(2), 95–110.

    Google Scholar 

  13. Dufresne, J. L., Foujols, M. A., Denvil, S., Caubel, A., Marti, O., Aumont, O., Balkanski, Y., Bekki, S., Bellenger, H., Benshila, R., Bony, S., Bopp, L., Braconnot, P., Brockmann, P., Cadule, P., Cheruy, F., Codron, F., Cozic, A., Cugnet, D., De Noblet, N., Duvel, J.-P., Ethé, C., Fairhead, L., Fichefet, T., Flavoni, S., Friedlingstein, P., Grandpeix, J.-Y., Guez, L., Guilyardi, E., Hauglustaine, D., Hourdin, F., Idelkadi, A., Ghattas, J., Joussaume, S., Kageyama, M., Krinner, G., Labetoulle, S., Lahellec, A., Lefebvre, M.-P., Lefevre, F., Levy, C., Li, Z. X., Lloyd, J., Lott, F., Madec, G., Mancip, M., Marchand, M., Masson, S., Meurdesoif, Y., Mignot, J., Musat, I., Parouty, S., Polcher, J., Rio, C., Schulz, M., Swingedouw, D., Szopa, S., Talandier, C., Terray, P., Viovy, N., & Vuichard, N. (2013). Climate change projections using the IPSL-CM5 earth system model: From CMIP3 to CMIP5. Climate Dynamics, 40(9), 2123–2165.

    Article  Google Scholar 

  14. Dunne, J. P., John, J. G., Adcroft, A. J., Griffies, S. M., Hallberg, R. W., Shevliakova, E., Stouffer, R. J., Cooke, W., Dunne, K. A., Harrison, M. J., Krasting, J. P., Malyshev, S. L., Milly, P. C. D., Phillipps, P. J., Sentman, L. T., Samuels, B. L., Spelman, M. J., Winton, M., Wittenberg, A. T., & Zadeh, N. (2012). GFDL’s ESM2 global coupled climate-carbon earth system models. Part I: Physical formulation and baseline simulation characteristics. Journal of Climate, 25(19), 6646–6665.

    Article  Google Scholar 

  15. FAO (Food and Agricultural Organization of the United Nations). (2009). International year of the potato 2008. New light on a hidden treasure. An end of the year review. Rome: FAO.

    Google Scholar 

  16. FAO (Food and Agricultural Organization of the United Nations). (2013). FAOSTAT Food Supply - Crops Primary Equivalent statistics. Rome: FAO. Retrieved from http://www.fao.org/faostat/en/#data/CC. Accessed 5 Feb 2018.

  17. FAO (Food and Agricultural Organization of the United Nations). (2016). The state of food and agriculture 2016. Climate change, agriculture and food security. Rome: FAO.

    Book  Google Scholar 

  18. FAO (Food and Agricultural Organization of the United Nations). (2017). FAOSTAT Food production statistics. Rome: FAO. Retrieved from http://www.fao.org/faostat/en/#data/CC and http://www.fao.org/faostat/en/#data/QC March 2017.

  19. FAO (Food and Agricultural Organization of the United Nations). (2018). FAOSTAT Food production statistics. Rome: FAO. Retrieved from http://www.fao.org/faostat/en/#data/QC. Accessed 20 Dec 2018.

  20. Fuglie, K., Khatana, V., Ilangantileke, S., Singh, J., Kumar, D., & Scott, G. (1997). Economics of potato storage in northern India. Quarterly Journal of International Agriculture, 39(2), 131–148.

    Google Scholar 

  21. GO-Science. (2011). Foresight: The future of food and farming. Final project report. London: Government Office for Science (GO-Science).

    Google Scholar 

  22. Haase, N., & Haverkort, A. (Eds.). (2006). Potato developments in a changing Europe. Wageningen: Wageningen Academic Publishers.

    Google Scholar 

  23. Hijmans, R. (2003). The effect of climate change on global potato production. American Journal of Potato Research, 80, 271–280.

    Article  Google Scholar 

  24. Horton, D. (1987). Potatoes: Production, marketing, and programs for developing countries. Boulder: Westview Press.

    Google Scholar 

  25. Horton, D. (1988). Underground crops: Long-term trends in production of roots and tubers. Morrilton: Winrock International.

    Google Scholar 

  26. Horton, D., & Fano, H. (1985). Potato atlas: Atlas de la pomme de terre: Atlas de la papa. Lima: International Potato Center.

    Google Scholar 

  27. Huang, J., Rozelle, S., & Rosegrant, M. W. (1999). China’s food economy to the twenty-first century: Supply, demand, and trade. Economic Development and Cultural Change, 47(4), 737–766.

    Article  Google Scholar 

  28. IIASA (International Institute for Applied Systems Analysis). (2013). SSP database. IIASA. Retrieved from https://secure.iiasa.ac.at/webapps/ene/SspDb/dsd?Action=htmlpage&page=about. Accessed 2014.

  29. Islam, S., Cenacchi, N., Sulser, T. B., Gbegbelegbe, S., Hareau, G., Kleinwechter, U., Mason-D’Croz, D., Nedumaran, S., Robertson, R., Robinson, S., & Wiebe, K. (2016). Structural approaches to modeling the impact of climate change and adaptation technologies on crop yields and food security. Global Food Security, 10, 63–70.

    Article  Google Scholar 

  30. Jaggard, K. W., Qi, A., & Ober, E. S. (2010). Possible changes to arable crop yields by 2050. Philosophical Transactions of the Royal Society B, 365, 2835–2851.

    Article  Google Scholar 

  31. Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L. A., Wilkens, P. W., Singh, U., Gijsman, A. J., & Ritchie, J. T. (2003). The DSSAT cropping system model. European Journal of Agronomy, 18(3), 235–265.

    Article  Google Scholar 

  32. Kumar, S. N., Aggarwal, P. K., Rani, S., Jain, S., Saxena, R., & Chauhan, N. (2011). Impact of climate change on Western Ghats, coastal and northeastern regions of India. Current Science, 101, 332–341.

    Google Scholar 

  33. Kumar, S. N., Govindakrishnan, P. M., Swarooparani, P. M., Nitin, C., Surabhi, J., & Aggarwal, P. K. (2015). Assessment of impact of climate change on potato and potential adaptation gains in the Indo-Gangetic Plains of India. International Journal of Plant Production, 9(1), 1151–1169.

    Google Scholar 

  34. Lobell, D. B., Burke, M. B., Tebaldi, C., Mastrandrea, M. D., Falcon, W. P., & Naylor, R. L. (2008). Prioritizing climate change adaptation needs for food security in 2030. Science, 319(5863), 607–610.

    PubMed  CAS  Article  Google Scholar 

  35. NCCD (National Center for Cold Chain Development). (2015). All India cold-chain infrastructure capacity (assessment of status & gap). Delhi: NCCD.

    Google Scholar 

  36. Nelson, G. C., Rosegrant, M. W., Palazzo, A., Gray, I., Ingersoll, C., Robertson, R., Tokgoz, S., Zhu, T., Sulser, T. B., Ringler, C., Msangi, S., & You, L. (2010). Food security, farming, and climate change to 2050. Washington DC: International Food Policy Research Institute.

    Google Scholar 

  37. O’Neil, B. C., Kriegler, E., Riahi, K., Ebi, K. L., Hallegatte, S., Carter, T. R., Mathur, R., & Van Vuuren, D. P. (2014). A new scenario framework for climate change research: The concept of shared socioeconomic pathways. Climatic Change, 122(3), 387–400.

    Article  Google Scholar 

  38. OECD (Organization for Economic Cooperation and Development) & FAO (Food and Agricultural Organization of the United Nations). (2016). OECD-FAO agricultural outlook 2016-2025. Paris: OECD and FAO.

    Google Scholar 

  39. Pandey, S. K. (2007). Approaches for breaching yield stagnation in potato. Potato Journal, 34(1-2), 1–9.

    Google Scholar 

  40. Pandey, S. K. (2008). Potato research priorities in Asia and the Pacific region. In M. Papademetriou (Ed.), Workshop to commemorate the international year of the Potato-2008, Bangkok, Thailand, 6 May 2008 (pp. 30–39).

  41. Pandey, S. K., & Sarkar, D. (2005). Potato in India: Emerging trends and challenges in the new millennium. Potato Journal, 32(3-4), 93–104.

    Google Scholar 

  42. Pandit, A., Kumar, A., Rana, R. K., Pandey, N. K., & Kumar, N. R. (2010). A study on socio-economic profile of potato farmers: Comparison of irrigated and rain-fed conditions in Himachal Pradesh. Potato Journal, 37(1−2), 56–63.

    Google Scholar 

  43. Pandya-Lorch, R., & Rosegrant, M. W. (2000). Prospects for food demand and supply in Central Asia. Food Policy, 25(6), 637–646.

    Article  Google Scholar 

  44. Patra, N. K., & Babu, S. C. (2017). Mapping Indian agricultural emissions: Lessons for food system transformation and policy support for climate-smart agriculture. Washington DC: International Food Policy Research Institute.

    Google Scholar 

  45. Petsakos, A., Hareau, G., Kleinwechter, U., Wiebe, K., & Sulser, T. B. (2018). Comparing modeling approaches for prioritization in international agricultural research. Research Evaluation, 27(2), 145–156.

    Article  Google Scholar 

  46. Pingali, P. (2006). Westernization of Asian diets and the transformation of food systems: Implicactions for research and policy. Food Policy, 32, 281–229.

    Article  Google Scholar 

  47. Pingali, P. (2015). Agricultural policy and nutrition outcomes—Getting beyond the preoccupation with staple grains. Food Security, 7, 583–591.

    Article  Google Scholar 

  48. Price, C., & Munns, R. (2017). Growth analysis: A quantitative approach. In R. Munns, S. Schmidt, & C. Beveridge (Eds.), Plants in action. A resource for teachers and students of plant science. Published on-line: Australian Society of Plant Scientists, New Zealand Society of Plant Biologists, and New Zealand Institute of Agricultural and Horticultural Science. Available at: http://plantsinaction.science.uq.edu.au/content/about.

  49. Rana, R. K., & Anwer, M. D. (2018). Potato production scenario and analysis of its total facto productivity in India. Indian Journal of Agricultural Sciences, 88(9), 1354–1361.

  50. Reardon, T., & Minten, B. (2011). Surprised by supermarkets: Diffusion of modern food retail in India. Journal of Agribusiness in Developing and Emerging Economies, 1(2), 134–161.

    Article  Google Scholar 

  51. Reardon, T., Chen, K., Minten, B., & Adriano, L. (2012). The quiet revolution in staple food value chains: Enter the dragon, the elephant, and the tiger. Manila: Asian Development Bank and International Food Policy Research Institute.

    Google Scholar 

  52. Robinson, S., Mason-D’Croz, D., Islam, S., Sulser, T. B., Robertson, R., Zhu, T., Gueneau, A., Pitois, G., & Rosegrant, M. (2015). The international model for policy analysis of agricultural commodities and trade (IMPACT), model description for version 3, discussion paper 01483. Washington DC: International Food Policy Research Institute.

    Google Scholar 

  53. Rosegrant, M. W., & IMPACT Development Team. (2012). International model for policy analysis of agricultural commodities and trade (IMPACT): Model description. Washington DC: International Food Policy Research Institute.

    Google Scholar 

  54. Scott, G. (1996). Paradoxes and projections for potatoes in the 1990’s. Entwicklung Ländlicher Raum, 3, 20–22.

    Google Scholar 

  55. Scott, G. (2002). Maps, models, and muddles: World trends and patterns in potato revisited. Potato Research, 45, 45–77.

    Article  Google Scholar 

  56. Scott, G., & Suarez, V. (2011). Growth rates for potato in India 1961-2009 and their implications for industry. Potato Journal, 38(2), 100–112.

    Google Scholar 

  57. Scott, G., & Suarez, V. (2012). The rise of Asia as the Centre of global potato production and some implications for industry. Potato Journal, 39(1), 1–22.

    Google Scholar 

  58. Scott, G., Rosegrant, M., & Ringler, C. (2000). Roots and tubers for the 21st century: Trends, projections, and policy options. Food, agriculture, and the environment discussion paper 31. Washington DC: International Food Policy Research Institute and the International Potato Center.

    Google Scholar 

  59. Scott, G. Petsakos, A., & Suarez, V. (2019). Not by bread alone: Estimating potato demand in India in 2030. Potato Research, Forthcoming. https://doi.org/10.1007/s11540-019-9411-x.

  60. Tewari, V. K. (2017). Agricultural mechanisation in the state of West Bengal, India. In M. A. Sattar, S. T. Bigg, & S. E. Justice (Eds.), Rural mechanisation. A driver in agricultural change and rural development (pp. 191–202). Institute for Inclusive Finance and Development: Dhaka.

    Google Scholar 

  61. Thiele, G., Theisen, K., Bonierbale, M., & Walker, T. (2010). Targeting the poor and hungry with potato science. Potato Journal, 37(3-4), 75–86.

    Google Scholar 

  62. United Nations. (2015). World population prospects. The 2015 revision. New York: United Nations (UN).

    Book  Google Scholar 

  63. Van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J. F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J., & Rose, S. K. (2011). The representative concentration pathways: An overview. Climatic Change, 109(1), 5–31.

    Article  Google Scholar 

  64. Van Vuuren, D. P., Kriegler, E., O’Neill, B. C., Ebi, K. L., Riahi, K., Carter, T. R., Edmonds, J., Hallegatte, S., Kram, T., Mathur, R., & Winkler, H. (2014). A new scenario framework for climate change research: Scenario matrix architecture. Climatic Change, 122, 373–386.

    Article  Google Scholar 

  65. Walker, T., Schmiediche, P., & Hijmans, R. (1999). World patterns and trends in the potato crop: An economic and geographic survey. Potato Research, 42, 241–264.

    Article  Google Scholar 

  66. Wana, C., & Andreosso-O’Callaghan, B. (2017). Global financial and food price crisis: A double shock on Asian food security. Asian Journal of Agriculture and Development, 14(1), 1–15.

    Google Scholar 

  67. Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., Nozawa, T., Kawase, H., Abe, M., Yokohata, T., Ise, T., Sato, H., Kato, E., Takata, K., Emori, S., & Kawamiya, M. (2011). MIROC-ESM 2010: Model description and basic results of CMIP5-20c3m experiments. Geoscientific Model Development, 4, 845–872.

    Article  Google Scholar 

  68. Wiebe, K., Lotze-Campen, H., Sands, R., Tabeau, A., Van der Mensbrugghe, D., Biewald, A., Bodirsky, B., Islam, S., Kavallari, A., Mason-D’Croz, D., Müller, C., Robertson, R., Robinson, S., Van Meijl, H., & Willenbockel, D. (2015). Climate change impacts on agriculture in 2050 under a range of plausible socioeconomic and emissions scenarios. Environmental Research Letters, 10, 085010.

  69. Woolfe, J. (1987). The potato in the human diet. Cambridge: International Potato Center and Cambridge University Press.

    Book  Google Scholar 

  70. World Bank. (2016). Climate change portal. Washington, DC: World Bank (WB). Available at http://sdwebx.worldbank.org/climateportal/index.cfm. Accessed Sept 2016.

  71. Xie, H., & Ringler, C. (2017). Agriculture nutrient loadings to the freshwater environment: 6 the role of climate change and socio-economic change. Environmental Research Letters, 12(10), 104008.

    Article  Google Scholar 

  72. Zandstra, H. (2000). The potato’s promise. In C. Graves (Ed.), The potato: The treasure of the Andes (pp. 147–156). Lima: International Potato Center.

    Google Scholar 

Download references

Acknowledgements

This work was undertaken as part of the Global Futures and Strategic Foresight project (GFSF) of the CGIAR Research Program on Policies, Institutions, and Markets (PIM). Funding support was provided by the CGIAR Research Program on Policies, Institutions and Markets (PIM). The opinions expressed here belong to the authors, and do not necessarily reflect those of PIM or the CGIAR.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gregory J. Scott.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Scott, G.J., Petsakos, A. & Juarez, H. Climate change, food security, and future scenarios for potato production in India to 2030. Food Sec. 11, 43–56 (2019). https://doi.org/10.1007/s12571-019-00897-z

Download citation

Keywords

  • Productivity
  • Climate change
  • Technology
  • IMPACT
  • Food policy
  • Food security

JEL Classification

  • Q11
  • Q16
  • Q18