Skip to main content

Assessing the value of diverse cropping systems under a new agricultural policy environment in Rwanda

Abstract

In Rwanda, farmers’ traditional farming systems based on intercropping and varietal mixtures are designed to meet a variety of livelihood objectives and withstand risks associated with fluctuation in market and agro-climatic conditions. However, these mixed systems have been disappearing since 2008 when government mandated intensification strategies. In this paper we use a mixed methods approach to evaluate intercropping and sole cropping systems against farmers’ criteria for success: yield, market value, contribution to nutritional quality, and land-use efficiency. We used qualitative interviews to understand the criteria by which farmers evaluate cropping systems, and data from crop trials to assess common bean ((Phaseolus vulgaris L.) and maize (Zea mays L.)) sole crops and intercrops against those criteria. We found that an improved intercropping system tends to outperform the government-mandated system of alternating sole-cropped bean and maize season-by-season, on all four of the criteria tested. Although Rwanda’s agricultural intensification strategy aims to improve rural livelihoods through agricultural modernization, it fails to acknowledge the multiple and currently non-replaceable benefits that diverse cropping systems provide, particularly food security and risk management. Agricultural policies need to be based on a better understanding of smallholders’ objectives and constraints. Efforts to improve farming systems require innovative and inclusive approaches that enable adaptation to the socio-ecological context.

This is a preview of subscription content, access via your institution.

Fig 1
Fig 2
Fig 3

References

  1. Altieri, M. A. (1999). The ecological role of biodiversity in agroecosystems. Agriculture, Ecosystems & Environment, 74, 19–31.

    Article  Google Scholar 

  2. Altieri, M. A. (2004). Linking ecologists and traditional farmers in the search for sustainable agriculture. Frontiers in Ecology and the Environment, 2, 35–42.

    Article  Google Scholar 

  3. Ansoms, A. (2008). Striving for growth, bypassing the poor? A critical review of Rwanda’s rural sector policies. The Journal of Modern African Studies, 46, 1–32.

    Article  Google Scholar 

  4. Arimond, M., & Ruel, M. T. (2004). Dietary diversity is associated with child nutritional status: evidence from 11 demographic and health surveys. Journal of Nutrition, 134, 2579–2585.

    CAS  PubMed  Google Scholar 

  5. Ashby, J. A., & Sperling, L. (1995). Institutionalizing participatory, client-driven research and technology development in agriculture. Development and Change, 26, 753–770.

    Article  Google Scholar 

  6. Bellon, M. R. (1996). The dynamics of crop infraspecific diversity: a conceptual framework at the farmer level 1. Economic Botany, 50, 26–39.

    Article  Google Scholar 

  7. Berti, B. R., & Jones, A. D. (2013). Biodiversity’s contribution to dietary diversity. In J. Fanzo, D. Hunter, T. Borelli, & F. Mattei (Eds.), Diversifying Food and Diets: Using Agricultural Biodiversity to Improve Nutrition and Health. Abingdon: Routledge.

    Google Scholar 

  8. Blarel, B., Hazell, P., Place, F., & Quiggin, J. (1992). The economics of farm fragmentation: evidence from Ghana and Rwanda. The World Bank Economic Review, 6, 233–254.

    Article  Google Scholar 

  9. Boudreau, M. A. (2013). Diseases in intercropping systems. Annual Review of Phytopathology, 51, 499–519.

    CAS  Article  PubMed  Google Scholar 

  10. Bressani, R. (1983). Research needs to upgrade the nutritional quality of common beans (Phaseolus vulgaris). Qual. Pl. Plant Foods Human Nutr., 32, 101–110.

    Article  Google Scholar 

  11. Broughton, W. J., Hernández, G., Blair, M., Beebe, S., Gepts, P., & Vanderleyden, J. (2003). Beans (Phaseolus spp.) – model food legumes. Plant and Soil, 252, 55–128.

    CAS  Article  Google Scholar 

  12. Brush, S. B. (2000). Genes in the field: On-farm conservation of crop diversity. IPGRI, Lewis Publishers, IDRC.

  13. Conelly, W., & Chaiken, M. (2000). Intensive farming, agro-diversity, and food security under conditions of extreme population pressure in western Kenya. Human Ecology, 28, 19–51.

    Article  Google Scholar 

  14. Connolly, J., Goma, H. C., & Rahim, K. (2001). The information content of indicators in intercropping research. Agriculture, Ecosystems & Environment, 87(2), 191–207. doi:10.1016/S0167-8809(01)00278-X.

    Article  Google Scholar 

  15. Darnhofer, I., Bellon, S., Dedieu, B., & Milestad, R. (2010a). Adaptiveness to enhance the sustainability of farming systems. A review. Agronomy for Sustainable Development, 30, 11.

    Article  Google Scholar 

  16. Darnhofer, I., Fairweather, J., & Moller, H. (2010b). Assessing a farm’s sustainability: insights from resilience thinking. International Journal of Agricultural Sustainability, 8, 186–198.

    Article  Google Scholar 

  17. De Janvry, A., Fafchamps, M., & Sadoulet, E. (1991). Peasant household behaviour with missing markets: some paradoxes explained. The Economic Journal, 101(409), 1400. doi:10.2307/2234892.

    Article  Google Scholar 

  18. Declerck, F. A. J., Fanzo, J., Palm, C., & Remans, R. (2011). Ecological approaches to human nutrition. Food & Nutrition Bulletin, 32(1), 41S–50S.

    Article  Google Scholar 

  19. DeWalt, B. R. (1994). Using indigenous knowledge to improve agriculture and natural resource management. Human Organization, 53, 123–131.

    Article  Google Scholar 

  20. Döring, T. F., Vieweger, A., Pautasso, M., Vaarst, M., Finckh, M. R., & Wolfe, M. S. (2014). Resilience as a universal criterion of health. Journal of the Science of Food and Agriculture, 95(3), 455–465.

    Article  PubMed  Google Scholar 

  21. Eastern and Southern Africa Regional Maize Conference, Friesen, D. K., Palmer, A. F. E., International Maize and Wheat Improvement Center, African Livelihoods Program, International Maize and Wheat Improvement Center, Maize Improvement Program & Kenya Agricultural Research Institute (eds). (2004). Integrated Approaches to Higher Maize Productivity in the New Millennium: Proceedings of the Seventh Eastern and Southern Africa Regional Maize Conference, Nairobi, Kenya, 5–11 February 2002. CIMMYT, African Livelihoods Program : Kenya Agricultural Research Institute, [Nairobi].

  22. FAO (1996). Declaration on world food security. FAO, Rome: World Food Summit.

    Google Scholar 

  23. Federer, W. T. (2012). Statistical design and analysis for intercropping experiments: Volume 1: Two crops. Springer Science & Business Media.

  24. Folke, C., Carpenter, S. R., Walker, B., Scheffer, M., Chapin, T., & Rockström, J. (2010). Resilience thinking: integrating resilience, adaptability and transformability. Ecology and Society, 15, 20.

    Google Scholar 

  25. Francis, C. A. (1989). Biological efficiencies in multiple-cropping systems. Advances in Agronomy, 42, 1–42.

    Article  Google Scholar 

  26. Francis, C. A., & Sanders, J. H. (1978). Economic analysis of bean and maize systems: monoculture versus associated cropping. Field Crops Research, 1, 319–335.

    Article  Google Scholar 

  27. Fukai, S., & Trenbath, B. R. (1993). Processes determining intercrop productivity and yields of component crops. Field Crops Research, 34, 247–271.

    Article  Google Scholar 

  28. Garrity, D., Dixon, J., & Boffa, J. M. (2012). Understanding African farming systems. Canberra: Australian International Food Security Centre.

    Google Scholar 

  29. Ghanbari, A., Dahmardeh, M., Siahsar, B. A., & Ramroudi, M. (2010). Effect of maize (Zea Mays L.) - cowpea (Vigna Unguiculata L.) intercropping on light distribution, soil temperature and soil moisture in arid environment. International journal of food, agriculture and environment, 8, 102–108.

    Google Scholar 

  30. Graham, P. H., & Ranalli, P. (1997). Common bean (Phaseolus Vulgaris L.). Field Crops Research, 53(1–3), 131–146.

    Article  Google Scholar 

  31. Greenwood, D. J., & Levin, M. (2007). Introduction to Action Research: Social Research for Social Change. Thousand Oaks: SAGE Publications.

    Book  Google Scholar 

  32. Hajjar, R., Jarvis, D. I., & Gemmill-Herren, B. (2008). The utility of crop genetic diversity in maintaining ecosystem services. Agriculture, Ecosystems & Environment, 123, 261–270.

    Article  Google Scholar 

  33. Herforth, A., Frongillo, E. A., Sassi, F., Mclean, M. S., Arabi, M., Tirado, C., et al. (2014). Toward an integrated approach to nutritional quality, environmental sustainability, and economic viability: research and measurement gaps. Annals of the New York Academy of Sciences, 1332, 1–21.

  34. HLPE (2013). Investing in smallholder agriculture for food security. Rome: A report by the High Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security.

    Google Scholar 

  35. Hoffmann, V., Probst, K., & Christinck, A. (2007). Farmers and researchers: how can collaborative advantages be created in participatory research and technology development? Agriculture and Human Values, 24, 355–368.

    Article  Google Scholar 

  36. Hooper, D. U., Chapin, F. S., Ewel, J. J., Hector, A., Inchausti, P., Lavorel, S., et al. (2005). Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs, 75, 3–35.

  37. Howe, G., & McKay, A. (2007). Combining quantitative and qualitative methods in assessing chronic poverty: the case of Rwanda. World Development, 35, 197–211.

    Article  Google Scholar 

  38. Huggins, C. (2013). Consolidating land, consolidating control: State-facilitated ‘agricultural investment’ through the ‘Green Revolution’ in Rwanda. Land Deal Politics Initiative (LDPI) Working Paper 16.

  39. Isaacs, K. B. (2014). Rediscovering the value of crop diversity in Rwanda: Participatory variety selection and genotype by cropping system interactions in bean and maize systems. Michigan State University. Retrieved from http://gradworks.umi.com/36/19/3619033.html

  40. Jackson, L. E., Pulleman, M. M., Brussaard, L., Bawa, K. S., Brown, G. G., Cardoso, I. M., et al. (2012). Social-ecological and regional adaptation of agrobiodiversity management across a global set of research regions. Global Environmental Change, 22, 623–639.

  41. Jodha, N. S. (1980). Intercropping in traditional farming systems. Journal of Development Studies, 16, 427–442.

    Article  Google Scholar 

  42. Johns, T. & Eyzaguirre, P.B. (2006). Linking Biodiversity, Diet and Health in Policy and Practice. Proceedings of the Nutrition Society, 65, 182–189.

  43. Jones, A. D., Shrinivas, A., & Bezner-Kerr, R. (2014). Farm production diversity is associated with greater household dietary diversity in Malawi: findings from nationally representative data. Food Policy, 46, 1–12.

    Article  Google Scholar 

  44. Kangasniemi, J. (1998). People and bananas on the steep slopes: agricultural intensification and food security under demographic pressure and environmental degradation in Rwanda. East Lansing: Michigan State University.

    Google Scholar 

  45. Kremen, C., & Miles, A. (2012). Ecosystem Services in Biologically Diversified versus conventional farming systems: benefits, externalities, and trade-offs. Ecology and Society, 17, 153–177.

    Google Scholar 

  46. Li, L., Tilman, D., Lambers, H., & Zhang, F. S. (2014). Plant diversity and overyielding: insights from belowground facilitation of intercropping in agriculture. New Phytologist, 203, 63–69.

    Article  PubMed  Google Scholar 

  47. Lin, B. B. (2011). Resilience in agriculture through crop diversification: adaptive management for environmental change. BioScience, 61(3), 183–193. doi:10.1525/bio.2011.61.3.4.

    Article  Google Scholar 

  48. Lithourgidis, A. S., Dordas, C. A., Damalas, C. A., & Vlachostergios, D. N. (2011). Annual intercrops: an alternative pathway for sustainable agriculture. Australian Journal of Crop Science, 5, 396–410.

    Google Scholar 

  49. Malézieux, E. (2012). Designing cropping systems from nature. Agronomy for Sustainable Development, 32, 15–29.

    Article  Google Scholar 

  50. Malézieux, E., Crozat, Y., Dupraz, C., Laurans, M., Makowski, D., Ozier-Lafontaine, H., et al. (2009). Mixing plant species in cropping systems: concepts, tools and models: a review. Sustainable Agriculture, 3, 329–353.

    Article  Google Scholar 

  51. Mead, R., & Riley, J. (1981). A review of statistical ideas relevant to intercropping research. Journal of the royal statistical society. Series A (General), 144(4), 462–509.

    Article  Google Scholar 

  52. Mead, R., Riley, J., Dear, K., & Singh, S. P. (1986). Stability comparison of intercropping and Monocropping systems. Biometrics, 42, 253–266.

    Article  Google Scholar 

  53. Mijatović, D., Van Oudenhoven, F., Eyzaguirre, P., & Hodgkin, T. (2013). The role of agricultural biodiversity in strengthening resilience to climate change: towards an analytical framework. International Journal of Agricultural Sustainability, 11, 95–107.

    Article  Google Scholar 

  54. MINIAGRI (Ministry of Agriculture and Animal Resources). (2004). Strategic plan for agricultural transformation in Rwanda. Republic of Rwanda. Retrieved from: http://www.ifad.org/english/operations/pf/rwa/i671rw/web/final/en/final_nobudget.pdf

  55. MINIAGRI (Ministry of Agriculture and Animal Resources). (2009a). Strategic plan for agricultural transformation in Rwanda - phase II (PSTA II). Republic of Rwanda. Retrieved from: http://www.gafspfund.org/sites/gafspfund.org/files/Documents/Rwanda_StrategicPlan.pdf

  56. MINIAGRI (Ministry of Agriculture and Animal Resources) & Natural Resources & IFDC. (2009b). Rwanda agroecological zones map. From AMITSA: http://www.amitsa.org/

  57. MINIAGRI (Ministry of Agriculture and Animal Resources) and National Institute of Statistics Rwanda (2012). Comprehensive food security and vulnerability analysis and nutrition survey. Rwanda: Ministry of Agriculture and Animal Resources.

    Google Scholar 

  58. Momsen, J. H. (2007). Gender and agrobiodiversity: introduction to the special issue. Singapore Journal of Tropical Geography, 28, 1–6.

    Article  Google Scholar 

  59. Mucheru-Muna, M., Pypers, P., Mugendi, D., Kung’u, J., Mugwe, J., Merckx, R., et al. (2010). A staggered maize–legume intercrop arrangement robustly increases crop yields and economic returns in the highlands of Central Kenya. Field Crops Research, 115, 132–139.

  60. National Institute of Statistics (NIS). (2010). National Agricultural Survey 2008. Republic of Rwanda. Retrieved from: http://www.statistics.gov.rw/publications/national-agricultural-survey-report-nas-2008

  61. Omamo, S. W. (1998). Transport costs and smallholder cropping choices: an application to Siaya District, Kenya. American Journal of Agricultural Economics, 80(1), 116–123. doi:10.2307/3180274.

    Article  Google Scholar 

  62. Power, A. G. (2010). Ecosystem services and agriculture: tradeoffs and synergies. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 2959–2971.

    Article  Google Scholar 

  63. Quisumbing, A. R. (1996). Male-female differences in agricultural productivity: methodological issues and empirical evidence. World Development, 24, 1579–1595.

    Article  Google Scholar 

  64. Quisumbing, A. R. (2003). Household decisions, gender, and development: A synthesis of recent research., xv + 274 pp. Washington, DC: International Food Policy Research Institute (IFPRI).

  65. Reason, P., & Bradbury, H. (2001). Handbook of Action Research: Participative Inquiry and Practice. London: SAGE Publications.

    Google Scholar 

  66. Remans, R., Wood, S. A., Saha, N., Anderman, T. L., & DeFries, R. S. (2014). Measuring nutritional diversity of national food supplies. Global Food Security, 3, 174–182.

    Article  Google Scholar 

  67. Rubin, H. J., & Rubin, I. S. (2012). Qualitative interviewing: The art of hearing data. Los Angeles: SAGE Publications.

    Google Scholar 

  68. Ruel, M. T. (2003). Operationalizing dietary diversity: a review of measurement issues and research priorities. Journal of Nutrition, 133, 3911S–33926.

    CAS  PubMed  Google Scholar 

  69. Rusinamhodzi, L., Corbeels, M., Nyamangara, J., & Giller, K. E. (2012). Maize–grain legume intercropping is an attractive option for ecological intensification that reduces climatic risk for smallholder farmers in Central Mozambique. Field Crops Research, 136, 12–22.

    Article  Google Scholar 

  70. Seran, T. H., & Brintha, I. (2010). Review on maize based intercropping. Journal of Agronomy, 9, 135–145.

    Article  Google Scholar 

  71. Smale, M. (2005). Valuing Crop Biodiversity: On-Farm Genetic Resources and Economic Change. Wallingford: CABI.

    Book  Google Scholar 

  72. Smith, M. E., & Francis, C. A. (1986). Breeding for multiple cropping systems. In C. A. Francis (Ed.), Multiple cropping (Systems ed.). New York, USA: MacMillan Publishing Company.

    Google Scholar 

  73. Smithson, J. B., & Lenne, J. M. (1996). Varietal mixtures: a viable strategy for sustainable productivity in subsistence agriculture. Annals of Applied Biology, 128, 127–158.

    Article  Google Scholar 

  74. Snapp, S., Kanyama-Phiri, G., Kamanga, B., Gilbert, R., & Wellard, K. (2002). Farmer and researcher partnerships in Malawi: developing soil fertility technologies for the near-term and far-term. Experimental Agriculture, 38, 411–431.

    Article  Google Scholar 

  75. Snapp, S. S., Blackie, M. J., Gilbert, R. A., Bezner-Kerr, R., & Kanyama-Phiri, G. Y. (2010). Biodiversity can support a greener revolution in Africa. Proceedings of the National Academy of Sciences, 201007199.

  76. Sperling, L. and P. Berkowitz. (1994). Partners in Selection: bean breeders and women bean experts in Rwanda. Consultative Group on International Agricultural Research.

  77. Swift, M. J., Izac, A.-M. N., & van Noordwijk, M. (2004). Biodiversity and ecosystem services in agricultural landscapes–are we asking the right questions? Agriculture, Ecosystems & Environment, 104, 113–134.

    Article  Google Scholar 

  78. Thrupp, L.A. (2000). Linking Agricultural Biodiversity and Food Security: The Valuable Role of Sustainable Agriculture. International Affairs (Royal Institute of International Affairs 1944-), 76, 265–281.

  79. Trenbath, B. R. (1986). Resource use by intercrops. In C. A. Francis (Ed.), Multiple Cropping Systems (pp 57–81). New York: MacMillan.

    Google Scholar 

  80. Trenbath, B. R. (1993). Intercropping for the management of pests and diseases. Field Crops Research, 34, 381–405.

    Article  Google Scholar 

  81. Trenbath, B. R. (1999). Multispecies cropping systems in India: predictions of their productivity, stability, resilience and ecological sustainability. Agroforestry Systems, 45, 81–107.

    Article  Google Scholar 

  82. Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I., & Thies, C. (2005). Landscape perspectives on agricultural intensification and biodiversity – ecosystem service management. Ecology Letters, 8, 857–874.

    Article  Google Scholar 

  83. Tscharntke, T., Clough, Y., Wanger, T. C., Jackson, L., Motzke, I., Perfecto, I., et al. (2012). Global food security, biodiversity conservation and the future of agricultural intensification. Biological Conservation, 151, 53–59.

  84. Tsubo, M., Walker, S., & Ogindo, H. O. (2005). A simulation model of cereal–legume intercropping systems for semi-arid regions: II. Model application. Field Crops Research, 93, 23–33.

    Article  Google Scholar 

  85. U.S. Department of Agriculture, Agricultural Research Service. (2013). USDA National Nutrient Database for standard reference, release 26. Retrieved from: Nutrient Data Laboratory Home Page, http://www.ars.usda.gov/ba/bhnrc/ndl

    Google Scholar 

  86. Vandermeer, J. H. (1992). The ecology of intercropping. Cambridge: Cambridge University Press.

    Google Scholar 

  87. Vandermeer, J. H. (2011). The ecology of agroecosystems. Sudbury, Mass: Jones and Bartlett Publishers.

    Google Scholar 

  88. Vandermeer, J., van Noordwijk, M., Anderson, J., Ong, C., & Perfecto, I. (1998). Global change and multi-species agroecosystems: concepts and issues. Agriculture, Ecosystems & Environment, 67, 1–22.

    Article  Google Scholar 

  89. Voss, J. (1992). Conserving and increasing on-farm genetic diversity: Farmer management of varietal bean mixtures. In J. L. Moock & R. E. Rhodes (Eds.), Utilizing and conserving agrobiodiversity in agricultural landscapes (pp. 34–51). Ithaca: Cornell University Press.

  90. Waddington, S. R., Mekuria, M., Siziba, S., & Karigwindi, J. (2007). Long-term yield sus- tainability and financial returns from grain legume–maize intercrops on a sandy soil in sub-humid north Central Zimbabwe. Experimental Agriculture, 43, 489–503.

    Article  Google Scholar 

  91. Walker, B., Sayer, J., Andrew, N.L. & Campbell, B. (2010). Should enhanced resilience Be an objective of natural resource management research for developing countries? Crop Science, 50, S–10–S–19.

  92. Welch, R. M., House W.A, Beebe, S., & Cheng, Z. (2000). Genetic selection for enhanced bioavailable levels of iron in bean (Phaseolus vulgaris L.) seeds. Journal of Agricultural and Food Chemistry, 48, 3576–3580.

    CAS  Article  PubMed  Google Scholar 

  93. Weltzien, E., & Christinck, A. (2011). Participatory breeding: developing improved and relevant crop varieties with farmers. In S. Snapp & B. Pound (Eds.), Agricultural Systems: Agroecology and Rural Innovation for Development: Agroecology and Rural Innovation for Development (pp 209–249). Waltham: Academic Press.

    Google Scholar 

  94. Willey, R. W. (1985). Evaluation and presentation of intercropping advantages. Experimental Agriculture, 21, 119–133.

    Article  Google Scholar 

  95. Wolfe, M. S. (2000). Crop strength through diversity. Nature, 406, 681–682.

    CAS  Article  PubMed  Google Scholar 

  96. World Food Programme. (2012). Rwanda: comprehensive food security and vulnerability analysis and nutrition survey 2012. United Nations World Food Programme: Rome, Italy. http://www.wfp.org/food-security, http://www.statistics.gov.rw

Download references

Acknowledgments

We wish to acknowledge Rwanda Agriculture Board (RAB) and Rural Northern Development (DERN) for providing assistance and staff resources in this study. We are grateful to Louis Butare (RAB) for administrative and field assistance and Edouard Murwanashyaka (RAB) and especially Faustin Nshimiyimana (DERN) for providing technical field assistance at the research stations and with data collection. Research was supported by funds from a Fulbright-Hayes Doctoral Dissertation Fellowship and the United States Agency for International Development (USAID) through the Dry Grain Pulses Collaborative Research Support Program (Cooperative Agreement EDH-A-00-07-00005-00). The content is solely the responsibility of the author(s) and does not necessarily represent the official views of the U.S. Agency for International Development (USAID).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Krista B. Isaacs.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Isaacs, K.B., Snapp, S.S., Chung, K. et al. Assessing the value of diverse cropping systems under a new agricultural policy environment in Rwanda. Food Sec. 8, 491–506 (2016). https://doi.org/10.1007/s12571-016-0582-x

Download citation

Keywords

  • Agriculture-nutrition
  • Agrobiodiversity
  • Intercrop
  • Resilience
  • Traditional knowledge