Skip to main content

Low permeability triple-layer plastic bags prevent losses of maize caused by insects in rural on-farm stores

Abstract

Participatory on-farm trials were conducted to assess effectiveness of Purdue Improved Crop Storage (PICS™) bags for storage of maize in small-scale farmers’ stores in rural villages in eastern Kenya. A PICS bag is a three-layered hermetic bag-system that forms a barrier against the influx of oxygen and the escape of carbon dioxide. Jute, woven polypropylene or PICS bags were filled with shelled maize grain, purchased from the participating farmers, and the three sets of bags kept in the farmers’ own stores for 35 weeks. Oxygen and carbon dioxide levels in the PICS bags were monitored, as well as the temperature and relative humidity in all the bags. Grain moisture, live insect population, grain damage and weight loss were examined at intervals of seven weeks. Oxygen and carbon dioxide composition demonstrated that PICS bags are capable of sustaining good air-barrier properties under farmer storage conditions. Moreover, moisture content of maize stored in PICS bags did not change throughout the storage period whereas the moisture content of maize stored in polypropylene and jute bags decreased significantly in the final 14 weeks. Maize stored in PICS bags remained free from insect infestation and the weight loss due to insect damage was below 1 %. On the contrary, polypropylene and jute bags permitted profuse build-up of insect populations. At 35 weeks, grain damage reached 77.6 % and 82.3 % corresponding to 41.2 % and 48.5 % weight loss in the polypropylene and jute bags respectively. These findings demonstrate that PICS bags are effective in controlling losses caused by storage pests under farmer storage conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Abebe, F., Tefera, T., Mugo, S., Beyene, Y., & Vidal, S. (2009). Resistance of maize varieties to the maize weevil (Sitophilus zeamais) (motsch.) (coleoptera: curculionidae). African Journal of Biotechnology, 8, 5937–5943.

    Google Scholar 

  • Affognon, H., Mutungi, C., Sanginga, P., & Borgemeister, C. (2015). Unpacking postharvest losses in sub-Saharan Africa. A Meta -Analysis. World Development., 66, 49–68.

    Article  Google Scholar 

  • Amoson, J. T., Conh de Beysac, B., Phlogene, B. J. R., Bergvision, D., Serratos, J. A., & Mihm, J. A. (1997). Mechanisms of resistance in maize grain to maize weevil and larger grain borer. Crop Science, 43, 2043–2049.

    Google Scholar 

  • Anankware, P. J., Fatunbi, A. O., Afreh-Nuamah, K., Obeng-Ofori, D., & Ansah, A. F. (2012). Efficacy of the multiple-layer hermetic storage bag for biorational management of primary beetle pests of stored maize. Academic Journal of Entomology., 5, 47–53.

    Google Scholar 

  • Annis, P. C. (1986). Towards rational controlled atmosphere dosage schedules: a review of current knowledge. In E. Donahaye & S. Navarro (Eds.), Stored Products Protection. Proceedings of the 4th International Working Conference on Stored-Product Protection (pp. 128–148). Jerusalem, Israel: Tel Aviv, Israel. Maor-Wallach Press.

    Google Scholar 

  • Bailey, S. W., & Banks, H. J. (1980). A review of recent studies of the effects of controlled atmospheres on stored product pests. In J. Shejbal (Ed.), Controlled atmosphere storage of grains (pp. 101–118). Amsterdam, The Netherlands: Elsevier Scientific Publishing Company.

    Chapter  Google Scholar 

  • Banks, H. J., & Annis, P. C. (1990). Comparative advantage of high CO2 and low O2 types of controlled atmospheres for grain storage. In M. Calderon & R. Barkai-Golan (Eds.), Food preservation by modified atmospheres (pp. 93–119). Boca Raton, Florida: CRC Press Inc.

    Google Scholar 

  • Baoua, I. B., Margam,V., Amadou, L., & Murdock, L. L. (2012a). Performance of triple bagging hermetic technology for postharvest storage of cowpea grain in Niger. Journal of Stored Products Research 51: 81–85.

  • Baoua, I. B., Amadou, L., Ousmane, B., Baributsa, D., & Murdock, L. L. (2014). PICS bags for post-harvest storage of maize grain in West Africa. Journal of Stored Products Research, 58, 20–28.

    Article  Google Scholar 

  • Baributsa, D., Djibo, K., Lowenberg-DeBoer, J., Moussa, B., & Baoua, I. (2014). The fate of triple-layer plastic bags used for cowpea storage. Journal of Stored Products Research, 58, 97–102.

    Article  Google Scholar 

  • Biliwa, A., & Richter, J. (1990). Efficacité des insecticides binaries en poudre sur du maïs stocké en sacs. In F. Fleurat-Lessard & P. Ducom (Eds.), Stored Products Protection. Proceedings of the 5th International Working Conference on Stored-Product Protection (pp. 1577–1536). Bordeaux, France: Imprimerie du Médoc.

    Google Scholar 

  • Birkinshaw, L. A., Hodges, R. J., Addo, S., & Riwa, W. (2002). Can ‘bad’ years for damage by Prostephanus truncatus be predicted? Crop Protection, 21, 783–791.

    Article  Google Scholar 

  • Boxall, R. (1986). A critical review of the methodology for assessing farm-level grain losses after harvest. tropical Development and Research Institute. London: Great Britain.

    Google Scholar 

  • Boxall, R. A. (2002). Damage and loss caused by the larger grain borer Prostephanus truncatus. Integrated Pest Management Reviews, 7, 105–121.

    Article  Google Scholar 

  • Clevo, W., & Clem, T. (2001). Why farmers continue to use pesticides despite environmental, health and sustainability costs. Ecological Economics, 39, 449–462.

    Article  Google Scholar 

  • Cofie-Agblor, R., Muir, W. E., Sinicio, R., Cenkowski, S., & Jayas, D. S. (1995). Characteristics of carbon dioxide sorption by stored wheat. Journal of Stored Products Research, 31, 317–324.

    Article  Google Scholar 

  • Compton, J. A. F., Floyd, S., Magrath, P. A., Addo, S., Gbedevi, S. R., Agbo, B., Bokor, G., Amekupe, S., Motey, Z., Penni, H., & Kumi, S. (1998). Involving grain traders in determining the effect of post-harvest insect damage on the price of maize in African markets. Crop Protection, 17, 483–489.

    Article  Google Scholar 

  • De Groote, H., Kimenju, C. S., Likhayo, P., Kanampiu, F., Tefera, T., & Hellin, J. (2013). Effectiveness of hermetic systems in controlling maize storage pests in Kenya. Journal of Stored Products Research, 53, 27–36.

    Article  Google Scholar 

  • Denloye, A. A., Tesilim, K. O., Negbenebor, H., & Makanjuola, W. A. (2008). Assessment of the efficacy of actellic and sumithion in protecting grains from insect infestation during storage. Journal of Entomology, 5, 24–30.

    CAS  Article  Google Scholar 

  • Donahaye, E. (1990). Laboratory selection of resistance by the red flour beetle Tribolium castaneum (herbst) to an atmosphere of low oxygen concentration. Phytoparasitica, 18, 189–202.

    Article  Google Scholar 

  • Fiedler, L. A. (1994). Rodent Pest Management in East Africa. In Plant Production and Protection Paper No. 123. Rome: Food and Agriculture Organization (FAO).

    Google Scholar 

  • Friedlander, A., Navarro, S., & Silhacek, D. L. (1984). The effect of carbon dioxide on NADPH production in Ephestia cautella (wlk.) pupae. Comparative Biochemistry Physiology. B: Biochemistry and Molecular Biology., 77B, 839–842.

    CAS  Google Scholar 

  • Gitonga, Z. M., De Groote, H., Kassie, M., & Tadele, T. (2013). Impact of metal silos on households’ maize storage, storage losses and food security: An application of a propensity score matching. Food Policy, 43, 44–55.

    Article  Google Scholar 

  • Golob, P., & Hanks, C. (1990). Protection of farm stored maize against infestation by Prostephanus trancatus (horn) and Sitophilus species in Tanzania. Journal of Stored Products Research, 26, 187–198.

    Article  Google Scholar 

  • Hodges, R. J. (2002). Detection and monitoring of the larger grain borer, Prostephanus truncatus (horn) (coleoptera: bostrichidae). Integrated Pest Management Reviews, 7, 223–243.

    Article  Google Scholar 

  • Jay, E. G. (1983). Imperfections in our current knowledge of insect biology as related to their response to controlled atmospheres. In B. E. Ripp, H. J. Banks, E. J. Bond, D. J. Calverley, E. G. Jay, & S. Navarro (Eds.), Controlled atmosphere and fumigation in Grain storage, 11–22 April 1983, Perth (pp. 493–508). Amsterdam, The Netherlands: Western Australia. Elsevier Scientific Publishing Company.

    Google Scholar 

  • Kimenju, S.C., and De Groote, H. (2010). Economic Analysis of Alternative Maize Storage Technologies in Kenya Cape Town, South Africa. African Association of Agricultural Economists (AAAE) and 48th Agricultural Economists Association of South Africa (AEASA)

  • Lamboni, Y., & Hell, K. (2009). Propagation of mycotoxigenic fungi in maize stores by postharvest insects. International Journal of Tropical Insect Science, 29(1), 31–39.

    Article  Google Scholar 

  • Lea, T. J., & Ashley, C. C. (1978). Increase in free Ca2+ in muscle after exposure to CO2. Nature, 275, 236–238.

    CAS  Article  PubMed  Google Scholar 

  • Madrid, F. J., White, N. D. G & Loschiavo, S. R. (1990). Insects in stored cereals, and their association with farming practices in Southern Manitoba. Canadian Entomologist 122, 515–523.

  • Makundi, R. H., Mbise, T. J., & Kilonzo, B. S. (1991). Observations on the role of rodents in crop losses in Tanzania and control strategies. Beiträge Zur Tropischen Landwirtschaft Und Vertirinärmedizin., 29, 465–474.

    Google Scholar 

  • Meikle, W. G., Markham, R. H., Nansen, C., Holst, N., Degbey, P., Azoma, K., & Korie, S. (2002). Pest management in traditional maize stores in West Africa: a farmer’s perspective. Journal of Economic Entomology, 95, 1079–1088.

    CAS  PubMed  Google Scholar 

  • Moreno-Martinez, E., Jimenez, A. S., & Vazquez, M. E. (2000). Effect of Sitophilus zeamais and Aspergillus chevalieri on the oxygen level in maize stored hermetically. Journal of Stored Products Research, 36, 25–36.

    Article  Google Scholar 

  • Murdock, L. L., Dogo, S. D., Ntoukam, G., Kitch, L., & Shade, R. E. (2003). Preservation of cowpea grain in sub-Saharan Africa-Bean/Cowpea CRSP contributions. Field Crops Research, 82, 169–178.

    Article  Google Scholar 

  • Murdock, L. L., Margam, V. M., Baoua, I., Balfe, S., & Shade, R. E. (2012). Death by desiccation: effects of hermetic storage on cowpea bruchids. Journal of Stored Products Research, 49, 166–170.

    Article  Google Scholar 

  • Mutambuki, K., & Ngatia, C. M. (2012). Assessment of grain damage and weight loss on farm stored maize in highlands areas of Bungoma district, Kenya. Journal of Agricultural Science and Technology, B 2, 349–361.

    Google Scholar 

  • Mutiro, C. F., Giga, D. P., & Chetsanga, P. (1992). Postharvest damage in small farmers’ stores. Zimbabwe. Journal of Agricultural Research, 30, 49–59.

    Google Scholar 

  • Ngatia, C. M., & Kimondo, M. (2011). Comparison of three methods of weight loss determination on maize stored in two farmer environments under natural infestation. Journal of Stored Products and Postharvest Research, 254–260.

  • Nicolas, G., & Sillans, D. (1989). Immediate and latent effects of carbon dioxide on insects. Annual Review of Entomology, 34, 97–116.

    CAS  Article  Google Scholar 

  • Njoroge, A. W., Affognon, H. D., Mutungi, C. M., Manono, J., Lamuka, P. O., & Murdock, L. L. (2014). Triple bag hermetic storage delivers a lethal punch to Prostephanus truncatus (horn) (coleoptera: bostrichidae) in stored maize. Journal of Stored Products Research, 58, 12–19.

    Article  Google Scholar 

  • Nukenine, E. N., Monglo, B., Awasom, I., Tchuenguen, F. F. N., & Ngassoum, M. B. (2002). Farmers’ perception on some aspects of maize production and infestation level of stored maize by Sitophilus zeamais in the ngaoundere region of Cameroon. CJBBS, 12, 18–30.

    Google Scholar 

  • Obeng-Ofori, D. (2011). Protecting grain from insect pest infestations in Africa: producer perceptions and practices. Stewart Postharvest Reviews., 3, 1–8.

    Article  Google Scholar 

  • Ognakossan, K. E., Tounou, A. K., Lamboni, Y., & Hell, K. (2013). Post-harvest insect infestation in maize grain stored in woven polypropylene and in hermetic bags. International Journal of Tropical Insect Science, 33, 71–81.

    Article  Google Scholar 

  • Ortega, C.A. (1987). Insect Pests of Maize: a Guide for Field Identification. CIMMYT, Mexico, D.F. Retrieved on 23/01/2015 from: http://pdf.usaid.gov/pdf_docs/PNAAX152.pdf

  • Schwartz, B. E., & Burkholder, W. E. (1991). Development of the granary weevil (coleoptera: curculionidae) on barley, corn, oats, rice, and wheat. Journal of Economic Entomology, 84, 1047–1052.

    Article  Google Scholar 

  • Sori, W., & Ayana, A. (2012). Storage pests of maize and their status in jimma zone, Ethiopia. African Journal of Agricultural Research, 28, 4056–4060.

    Google Scholar 

  • Stathers, T. E., Riwa, W., Mvumi, B. M., Mosha, R., Kitandu, L., Mngara, K., Kaoneka, B., & Morris, M. (2008). Do diatomaceous earths have potential as grain protectants for small-holder farmers in sub-Saharan Africa? The case of Tanzania. Crop Protection, 27, 44–70.

    CAS  Article  Google Scholar 

  • Subramanyam, B., & Hagstrum, D. W. (1996). Resistance measurement and management. In B. Subramanyam & D. W. Hagstrum (Eds.), Integrated Management of Insects in Stored Products (pp. 331–397). New York, USA: Marcel Dekker, Inc.

    Google Scholar 

  • Tadele, T., Kanampiu, F., De Groote, H., Hellin, J., Mugo, S., Kimenju, S., Beyene, Y., Boddupalli, P. M., Shiferaw, B., & Banziger, M. (2011). The metal silo: An effective grain storage technology for reducing post-harvest insect and pathogen losses in maize while improving smallholder farmers’ food security in developing countries. Crop Protection, 30, 240–245.

    Article  Google Scholar 

  • Vachanth, M. C., Subbu Rathinam, K. M., Preethi, R., & Loganathan, M. (2010). Controlled atmosphere storage technique for safe storage of processed little millet. Academic Journal of Entomology., 3, 12–14.

    Google Scholar 

  • Vales, M. I., Rao, G. V. R., Sudini, S. B., Patil, S. B., & Murdock, L. L. (2014). Effective and economic storage of pigeonpea seed in triple layer plastic bags. Journal of Stored Products Research, 58, 29–38.

    Article  Google Scholar 

  • Williams, S. B., Baributsa, D., & Woloshuk, C. (2014). Assessing Purdue Improved Crop Storage (PICS) bags to mitigate fungal growth and aflatoxin contamination. Journal of Stored Products Research, 59, 190–196.

    Article  Google Scholar 

  • World Bank, (2010). Missing food: the case of postharvest grain losses in sub-Saharan Africa. Washington, DC: World Bank, 116 pp

  • Yamamoto, A., & Mitsuda, H. (1980). Characteristics of carbon dioxide gas adsorption by grain and its components. In J. Shejbal (Ed.), Controlled atmosphere storage of grains international symposium, 12–15 may 1980 (pp. 247–258). Rome, Italy: Castelgandolfo.

    Google Scholar 

  • Zia-Ur-Rehman (2006). Storage effects on nutritional quality of commonly consumed cereals. Food Chemistry, 95, 53–57.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

C. Mutungi is thankful to Grand Challenges Canada for a grant (GCC-0423-01) to conduct this study. The authors thank the International Centre of Insect Physiology and Ecology (icipe) for institutional support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hippolyte Affognon.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ng’ang’a, J., Mutungi, C., Imathiu, S.M. et al. Low permeability triple-layer plastic bags prevent losses of maize caused by insects in rural on-farm stores. Food Sec. 8, 621–633 (2016). https://doi.org/10.1007/s12571-016-0567-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12571-016-0567-9

Keywords

  • Maize
  • On-farm
  • Storage losses
  • Hermetic bags