Advertisement

Food Security

, Volume 8, Issue 2, pp 389–404 | Cite as

A review of postharvest handling and losses in the fresh tomato supply chain: a focus on Sub-Saharan Africa

  • M. S. SibomanaEmail author
  • T. S. Workneh
  • K. Audain
Review

Abstract

The mitigation of postharvest losses in the Sub-Saharan Africa (SSA) tomato industry has the potential to improve profit margins, livelihoods and food security. This review focuses on the current status of postharvest handling of tomatoes in SSA. Recent peer-reviewed, industry, government and non-governmental organisations’ documents were consulted. Descriptive and quantitative approaches were used to present the information from the literature. Postharvest losses in the fresh tomato supply chain in SSA occur predominantly at the pre-consumer level, in contrast to similar supply chains in developed countries. Overall, recent estimations of losses in fresh market tomatoes were similar across SSA; 9.5 % in East Africa, 9.8 % in Central and Southern Africa, and 10.04 % in West Africa. Examples of individual countries showed estimated losses of 10.1 % in Kenya, 10.2 % in South Africa and 13.4 % in Nigeria representing multi-million dollar losses from these supply chains. Inadequate monitoring and quantifying of losses was noted in SSA. This document identifies postharvest challenges and presents possible interventions and opportunities for both large and small-scale producers. Overall, the implementation of any solutions in the SSA tomato supply chains will have to account for the specific contexts of each chain and level of production.

Keywords

Postharvest losses Tomatoes Packaging Temperature control Disinfection Transportation 

References

  1. Aba, P. I., Gana, M. Y., Ogbonnaya, C., & Morenikeji, O. O. (2012). Simulated transport damage study on fresh tomato (Lycopersicon esculentum) fruits. CIGR Journal, 14(2), 119–126.Google Scholar
  2. Adedeji, O., Taiwo, K. A., Akanbi, C. T., & Ajani, R. (2006). Physicochemical properties of four tomato cultivars grown in Nigeria. Journal of Food Processing and Preservation, 30, 79–86.CrossRefGoogle Scholar
  3. Adeoye, I. B., Odeleye, O. M. O., Babalola, S. O., & Afolayan, S. O. (2009). Economic analysis of tomato losses in Ibadan Metropolis, Oyo State, Nigeria. African Journal of Basic and Applied Sciences, 1(5–6), 87–92.Google Scholar
  4. Adepoju, A. O. (2014). Post-harvest losses and welfare of tomato farmers in Ogbomosho, Osun state, Nigeria. Journal of Stored Products and Postharvest Research, 5(2), 8–13.CrossRefGoogle Scholar
  5. Afari-Sefa, V., Tenkouano, A., Ojiewo, C. O., Keatinge, J. D. H., & Hughes, J.’. A. (2012). Vegetable breeding in Africa: constraints, complexity and contributions toward achieving food and nutritional security. Food Security, 4, 115–127.CrossRefGoogle Scholar
  6. Affognon, H., Mutungi, C., Saginga, P., & Borgmeister, C. (2015). Unpacking postharvest losses in Sub-Saharan Africa: a meta-analysis. World Development, 66, 49–68.CrossRefGoogle Scholar
  7. Ahmed, L., Martin-Diana, A. B., Rico, D., & Barry-Ryan, C. (2013). Effect of delactosed whey permeate treatment on physic-chemical, sensorial, nutritional and microbial properties of wholes tomatoes during postharvest storage. LWT- Food Science and Technology, 51(1), 367–374.CrossRefGoogle Scholar
  8. Ajagbe, B.O., Oyediran, W.O., Omoare, A.M. & Sofowora, O.O. (2014). Assessment of post-harvest practices among tomato (Solanum lycopersicum) farmers/processors in Abeokuta North local government area of Ogun State, Nigeria. International Journal of Education and Research, 2, 1–12.Google Scholar
  9. Akbudak, B., Akbudak, N., Seniz, V., & Eris, A. (2007). Sequential treatments of hot water and modified atmosphere packaging in cherry tomatoes. Journal of Food Quality, 30(6), 896–910.CrossRefGoogle Scholar
  10. Akbudak, B., Akbudal, N., Seniz, V., & Eris, A. (2012). Effect of pre-harvest hairpin and modified atmosphere packaging on quality of cherry tomato cultivars ‘Alona’ and ‘Cluster’. British Food Journal, 114(2), 180–196.CrossRefGoogle Scholar
  11. Akponipke, I. P. B., Wima, K., Yacouba, H., & Mermoud, A. (2011). Reuse of domestic wastewater treated in macrophyte ponds to irrigate tomato and eggplant in semi-arid West-Africa: benefits and risks. Agricultural Water Management, 98, 834–840.CrossRefGoogle Scholar
  12. Anon (2013a). The fresh fruit and vegetable markets of East Africa: An assessment of regional value chain actors, activities and constraints in Kenya, Uganda and Tanzania Report No. EEM-I-00-07-00008-00. Washington DC: Chemonics International Inc..Google Scholar
  13. Anon. (2013b). Using the IDV to study produce in West Africa. [Internet]. Available at: http://www.unidata.ucar.edu/blogs/news/entry/studying_produce_transport_in_west (Accessed: 11th Feb 2015).
  14. Asgedom, S., Struik, P. C., Heuvelink, E., & Arala, W. (2011). Opportunities and constraints of tomato production in Eritrea. African Journal of Agricultural Research, 6(4), 956–967.Google Scholar
  15. Aulakh, J, Regmi, A, Fulton, JR and Alexander, C .(2013). Estimating post-harvest food losses: Developing a consistent global estimation framework. Agricultural and applied economics association annual meeting, August 4–6, Washington, D.C. USA.Google Scholar
  16. Austin, J. (2009). Study on marketing, post harvest and trade opportunities for fruit and vegetables in Rwanda Report No. 1ESAD04. Virginia: JE Austin Associates Inc..Google Scholar
  17. Balibrea, M. E., Martinez-Andujar, C., Cuartero, J., Bolarin, M. C., & Perez-Alfocea, F. (2006). The high fruit soluble sugar content in wild Lycopersicon species and their hybrids with cultivars depends on sucrose import during ripening rather than on sucrose metabolism. Functional Plant Biology, 33, 279–288.CrossRefGoogle Scholar
  18. Baliyan, S. P. & Rao, M. S. (2013). Evaluation of tomato varieties for pest and disease adaptation and productivity in Botswana. International Journal of Agricultural and Food Research, 2(3), 20–29.Google Scholar
  19. Bari, M. L., Sabina, Y., Isobe, S., Umemura, T., & Isshiki, K. (2003). Effectiveness of electrolyzed acidic water in killing Escherichia coli 0157:H7, Salmonella enteriditis and Listeria moncytogenes on the surfaces of tomatoes. Journal of Food Protection, 4(7), 542–548.Google Scholar
  20. Batu, A. (2004). Determination of acceptable firmness and colour values of tomatoes. Journal of Food Engineering, 61, 471–475.CrossRefGoogle Scholar
  21. Beckles, D. M. (2012). Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum) fruit. Postharvest Biology and Technology, 63, 129–140.CrossRefGoogle Scholar
  22. Berna, A. Z., Lammertyn, J., Saevels, S., Di Natale, C., & Nicolai, B. M. (2004). Electronic nose systems to study the shelf life and cultivar effect on tomato aroma profile. Sensors and Actuators B, 97, 324–333.CrossRefGoogle Scholar
  23. Bertolini, M., Bottani, E., Rizzi, A., Volpi, A., & Renzi, P. (2013). Shrinkage reduction in perishable food supply chain by means of an RFID-based FIFO management policy. International Journal of RF Technologies, 5, 123–136.Google Scholar
  24. Brackett, R. E. (1999). Incidence, contributing factors and control of bacterial pathogens in produce. Postharvest Biology and Technology, 15, 305–311.CrossRefGoogle Scholar
  25. Bremmen, N. (2014). She Leads Africa is taking these 8 female entrepreneurs to pitch in the US. [Internet]. Ventureburn, Cape Town, South Africa. Available from: http://ventureburn.com/2014/11/leads-africa-taking-8-female-entrepreneurs-pitch-us/ [Accessed: 16 July 2015].
  26. Bruckner, S., Albrecht, A., Petersen, B., & Kreyenschmidt, J. (2013). A predictive shelf life model as a tool for the improvement of quality management in pork and poultry chains. Food Control, 29, 451–460.CrossRefGoogle Scholar
  27. Bureau, S., Page, D., Boge, M., & Renard, C. M. G. (2015). Mid-infrared spectroscopy as a rapid and convenient tool for the characterisation of tomato purees. Acta Horticulturae, 1081, 317–322.CrossRefGoogle Scholar
  28. Buyukbay, E. O., Uzunoz, M., & Bal, G. S. H. (2011). Post-harvest losses in tomato and fresh bean production in Tokat province of Turkey. Scientific Research and Essays, 6(7), 1656–1666.Google Scholar
  29. Buzby, J., Hyman, C., Stewart, J., & Wells, H. H. F. (2011). The value of retail- and customer-level fruit and vegetable losses in the United States. Journal of Consumer Affairs, 45(3), 492–515.CrossRefGoogle Scholar
  30. Chikazunga, D. (2013). Determinants of smallholder farmers’ participation in modern food markets: The case of tomato supply chains in Limpopo. In S. Greenberg (Ed.), Smallholders and agro-food value chains in South Africa: Emerging practices, emerging challenges Ch. 3, 15–22. Cape Town: Institute for Poverty, Land and Agrarian Studies.Google Scholar
  31. Collen, C. (2013). Spanish tomato exports rise. Eurofruit. [Internet]. Available at: http://www.fruitnet.com/eurofruit/article/159289/spanish-tomato-exports-rise (Accessed: 31st July 2014).
  32. Dabrowski, J. M., Shadung, J. M., & Wepener, V. (2014). Prioritizing agricultural pesticides used in South Africa based on their environmental mobility and potential human health effects. Environmental International, 62, 31–40.CrossRefGoogle Scholar
  33. DAFF (2009). Report of the ministerial interim committee on the restructuring of fresh produce markets in South Africa (p. 32). Pretoria: National Department of Agriculture.Google Scholar
  34. DAFF (2013). South African varieties list as maintained by the registrar of plant improvement (p. 25). Pretoria: National Department of Agriculture.Google Scholar
  35. DAFF (2014a). Trends in the agricultural sector (vol. 52, pp. 49–50). Pretoria: National Department of Agriculture.Google Scholar
  36. DAFF (2014b). Production guidelines for tomato (p. 22). Pretoria: National Department of Agriculture.Google Scholar
  37. Davila-Avina, J. E., Villa-Rodriguez, J. A., Villegas-Ochoa, M. A., Tortoledo-Ortiz, O., Olivas, G. I., Ayala-Zavala, J. F., et al. (2014). Effect of edible coatings on bioactive compounds and antioxidant capacity of tomatoes at different maturity stages. Journal of Food Science and Technology, 51(10), 2706–2712.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Directorate Marketing (2013). A profile of the South African tomato market value chain. Department of Agriculture, Forestry and Fisheries, Pretoria, South Africa.Google Scholar
  39. Eichen, Y., Haarer, D., Feuerstack, M. and Jannasch, U. (2008). What it takes to make it work: the Onvu TTI. In Cold Chain-Management, 3rd International Workshop¸ Bonn, Germany, 2–3 June 2008, pp. 106–113.Google Scholar
  40. El Yasmine, A. S. L., Ghani, B. A., Trentesaux, D., & Beldjilali, B. (2014). Supply chain management using multi-agent systems in the agri-food industry. Service Orientation in Holonic and Multi-Agent Manufacturing and Robotic Studies in Computational Intelligence, 544, 145–155.CrossRefGoogle Scholar
  41. Etebu, E., Nwauzoma, A. B., & Bawo, D. D. S. (2013). Postharvest spoilage of tomato (Lycopersicon esculentum Mill.) and control strategies in Nigeria. Journal of Biology, Agriculture and Healthcare, 3(10), 51–61.Google Scholar
  42. European Commission (2012). Monitoring agri-trade policy: the EU and major world players in fruit and vegetable trade. Belgium: Brussels.Google Scholar
  43. Fanadzo, M., Chiduza, C., & Mnkeni, P. N. S. (2010). Overview of smallholder irrigation schemes in South Africa: relationship between farmer crop management practices and performance. African Journal of Agricultural Research, 5(25), 3514–3523.Google Scholar
  44. FAOSTAT (2014). Online statistical database of the Food and Agricultural Organisation of the United Nation. [Internet]. Available at: http://faostat.fao.org/. Accessed: 31st July 2014)
  45. FAOSTAT (2015). Online statistical database of the Food and Agricultural Organisation of the United Nation. [Internet]. Available at: http://faostat.fao.org/. Accessed: 16th March 2015).
  46. Farneti, B., Schouten, R. E., Qian, T., Dieleman, J. A., Tijskens, L. M. M., & Woltering, E. J. (2013). Greenhouse climate control affects postharvest tomato quality. Postharvest Biology And Technology, 86, 354–361.CrossRefGoogle Scholar
  47. Flores, K., Sanchez, M. T., Marin-Perez, D., Guerrero, J. E., & Garrido-Varo, A. (2009). Feasibility in NIRS instruments for predicting internal quality in intact tomato. Journal of Food Engineering, 91, 311–318.CrossRefGoogle Scholar
  48. Gangwar, L. S., Singh, D., & Singh, D. B. (2007). Estimation of post-harvest losses in Kinnow Mandarin in Punjab using a modified formula. Agricultural Economics Research Review, 20(2), 315–331.Google Scholar
  49. Garcia-Garcia, I., Taboada-Rodriguez, A., Lopez-Gomez, A., & Marin-Iniesta, F. (2013). Active packaging of cardboard to extend the shelf-life of tomatoes. Food and Bioprocess Technology, 6, 754–761.CrossRefGoogle Scholar
  50. Gastelum-Barrios, A., Borquez-Lopez, R. A., Rico-Garcia, E., Toldeno-Ayala, M., & Soto-Zarazua, G. M. (2011). Tomato quality evaluation with image processing: a review. African Journal of Agricultural Research, 6(14), 3333–3339.Google Scholar
  51. Gemmell, M. E. & Schmidt, S. (2012). Microbiological assessment of river water used for the irrigation of fresh produce in a sub-urban community in Sobantu, South Africa. Food Research International, 47, 300–305.CrossRefGoogle Scholar
  52. Gil, M.I., Gomez-Lopez, V.M., Hung, Y-C. & Allende, A. (2015). Potential of electrolyzed water as an alternative disinfectant in the fresh-cut industry. Food and Bioprocess Technology, 8, 1336–1348.Google Scholar
  53. GIZ – Deutche Gesellschaft für Internationale Zusammenbareit (GIZ) GmbH (2013). Reducing postharvest losses conserves natural resources and saves money. Report of GFFA Expert panel discussion held on 18 January 2013 in Berlin, Pp. 30.Google Scholar
  54. Gonzalez-Aguilar, G. A., Valenzuela-Soto, E., Lizardi-Mendoza, J., Goycoolea, F., Martinez-Tellez, M. A., Villegas-Ochoa, M. A., et al. (2009). Effect of chitosan coating in preventing deterioration and preserving the quality of fresh-cut papaya ‘Maradol’. Journal of the Science of Food and Agriculture, 89, 15–23.CrossRefGoogle Scholar
  55. Goodburn, C. & Wallace, C. A. (2013). The microbiological efficacy of decontamination methodologies for fresh produce: a review. Food Control, 32, 418–427.CrossRefGoogle Scholar
  56. Gunders, D. (2012). Wasted: How America is Losing Up to 40 percent of its food from farm to fork to landfill. NRDC Issue Paper IP 12-06-B. New York City: Natural Resources Defense Council.Google Scholar
  57. Gustavsson, J., Cederberg, C., Sonesson, U., van Otterdijk, R. and Meybeck, A. (2011). Global food losses and food waste: extent, causes and prevention. Study conducted for the International Congress SAVE FOOD! at Interpack 2011, Dusseldorf, Germany. Food and Agricultural Organisation of the United Nations, Rome.Google Scholar
  58. Hertog, M. L. A. T. M., Uysal, I., McCarthy, U., Verlinden, B. M., & Nicolai, B. M. (2014). Shelf life modelling for first-expired-first-out warehouse management. Philosophical Transactions of the Royal Society A, 372. doi: 10.1098/rsta.2013.0306.
  59. Hewett, E.W. (2004). Postharvest challenges for crops grown under protected cultivation. Proceedings of ISHS International Symposium on Greenhouse Environmental Controls and In-house Mechanization for Crop Production in the Tropics and Sub-Tropics¸ Malaysia, 15–17 June.Google Scholar
  60. Hewett, E. W. (2006). An overview of preharvest factors influencing postharvest quality of horticultural products. International Journal of Postharvest Technology and Innovation, 1, 4–15.CrossRefGoogle Scholar
  61. Hodges, R. J., Buzby, J. C., & Bennett, B. (2011). Postharvest losses and waste in developed and less developed countries: opportunities to improve resource use. Journal of Agricultural Science, 149, 37–45.CrossRefGoogle Scholar
  62. Idah, P. A., Ajisegiri, E. S. A., & Yisa, M. G. (2007). Fruits and vegetables handling and transportation in Nigeria. AU Journal of Technology, 10(3), 175–183.Google Scholar
  63. Islam, P. M. & Morimoto, T. (2014). A new zero energy cool chamber with a solar-driven adsorption refrigerator. Renewable Energy, 72, 367–376.CrossRefGoogle Scholar
  64. Islam, P. M., Morimoto, T., & Hatou, K. (2012). Storage behavior of tomato inside a zero energy cool chamber. Agricultural Engineering International CIGR Journal, 14(4), 209–217.Google Scholar
  65. Jaiyeoba, K. F. & Raji, A. O. (2012). Influence of varietal difference on qualities of osmosized tomato in the South Western Nigeria. Food Science and Quality Management, 4, 1–9.Google Scholar
  66. Jedermann, R., Nicometo, M., Uysal, I., & Lang, W. (2014). Reducing food losses by intelligent food logistics. Philosophical Transactions of the Royal Society A, 372. doi: 10.1098/rtsa.2013.0302.
  67. Kaminski, J. and Christiansen, L. (2014). Postharvest Losses in Sub-Saharan Africa: What do farmers say? Policy Research Working Paper 6907. World Bank, Washington DC, USA.Google Scholar
  68. Kereth, G. A., Lyimo, M., Mbwana, H. A., Mongi, R. J., & Ruhembe, C. C. (2013). Assessment of post-harvest handling practices: knowledge and losses of fruits in Bagamoyo district of Tanzania. Food Science and Quality Management, 11, 8–15.Google Scholar
  69. Khaleghi, S. S., Ansari, N. A., Rahemi, M., & Peidayesh, M. (2014). Effect of hot water treatment and surface disinfection with NaCl on storage life and reducing decay of tomato fruit. International Journal of Farming and Allied Sciences, 3(2), 155–160.Google Scholar
  70. Kitinoja, L. (2013). Innovative small-scale postharvest technologies for reducing losses in horticultural crops. Ethiopian Journal of Applied Science and Technology, (Special issue No. 1), 9–15.Google Scholar
  71. Kitinoja, L. & AlHassan, H.Y. (2012). Identification of appropriate postharvest technologies for small scale horticultural farmers and marketers in Sub-Saharan Africa and South Asia – Part 1. Postharvest losses and quality assessments. Acta Horticulturae. P. 31–40.Google Scholar
  72. Kitinoja, L. & Thompson, J. F. (2010). Pre-cooling systems for small-scale producers. Stewart Postharvest Review, 2, 1–14.CrossRefGoogle Scholar
  73. Kitinoja, L., Saran, S., Roy, S. K., & Kader, A. A. (2011). Postharvest technology for developing countries: challenges and opportunities in research, outreach and advocacy. Journal of the Science of Food and Agriculture, 91, 597–603.CrossRefPubMedGoogle Scholar
  74. Korsten, L. (2006). Advances in control of postharvest diseases in tropical fresh produce. International Journal of Postharvest Technology and Innovation, 1, 48–61.CrossRefGoogle Scholar
  75. Kugblenu, Y. O., Danso, E. O., Ofori, K., Andersen, M. N., Abenney-Mickson, S., Sabi, E. B., et al. (2013). Screening tomato genotypes for adaptation to high temperature in West Africa. Acta Agriculturae Scandinavica Section B Soil and Plant Science, 63(6), 516–522.Google Scholar
  76. Lipinski, B, Hanson, C, Lomax, J, Kitinoja, L, Waite, R and Searchinger, T. (2013). Reducing food loss and waste. Working paper. Installment 2 of Creating a Sustainable Food Future. Washington, DC: World Resources Institute. (Accessed: 6th July 2015) (Available online at: http://www.worldresourcesreport.org).
  77. Louw, A., Vermeulen, H., Kirsten, J., & Madevu, H. (2007). Securing small farmer participation in the supermarket supply chains in South Africa. Development Southern Africa, 24(4), 539–551.CrossRefGoogle Scholar
  78. Malherbe, S and Marais, D. (2015). Economics, yield, and ecology: A case study from the South African tomato industry. [Internet]. Available at: http://repository.up.ac.za/xmlui/bitstream/handle/2263/45493/Malherbe_Economics_2015.pdf?sequence=1&isAllowed=y (Accessed: 17th Oct 2015)
  79. Maliwichi, L. L., Pfumayaramba, T. K., & Katlego, T. (2014). An analysis of constraints that affect smallholder farmers in the production of tomatoes in Ga-Mphahlele, LepelleNkumbi municipality, Limpopo Province, South Africa. Journal of Human Ecology, 47(3), 269–274.Google Scholar
  80. Mashau, M. E., Moyane, J. N., & Jideani, I. A. (2012). Assessment of post harvest losses of fruits at Tshakhuma fruit market in Limpopo, South Africa. African Journal of Agricultural Research, 7(29), 4145–4150.CrossRefGoogle Scholar
  81. Maul, F., Sargent, S. A., Sims, C. A., Baldwin, E. A., Balaban, M. O., & Huber, D. J. (2000). Tomato flavor and aroma quality as affected by storage temperature. Journal of Food Science, 65(7), 1228–1237.CrossRefGoogle Scholar
  82. Mdluli, F., Thamaga-Chitja, J., & Schmidt, S. (2013). Appraisal of hygiene indicators and farming practices in the production of leafy vegetables by organic small-scale farmers in uMbumbulu (rural KwaZulu-Natal, South Africa). International Journal of Environmental Research and Public Health, 10(9), 4323–4338.CrossRefPubMedPubMedCentralGoogle Scholar
  83. Mebratie, M. A., Haji, J., Woldetsadik, K., & Ayalew, A. (2014). Determinants of postharvest banana loss in the marketing chain of Central Ethiopia. Food Science and Quality Management, 37, 52–63.Google Scholar
  84. Messina, V., Dominguez, P. G., Sancho, A. M., de Reca, N. W., Carrari, F., & Grigioni, G. (2014). Tomato quality during short-term storage assessed by colour and electronic nose. International Journal of Electrochemistry, 687429, 1–7. doi: 10.1155/2012/687429.Google Scholar
  85. Mohammadi-Aylar, S., Jamaati-e-Somarin, S., & Azimi, J. (2010). Effect of stage of ripening on mechanical damage in tomato fruits. American-Eurasian Journal of Agriculture and Environmental Science, 9(3), 297–302.Google Scholar
  86. Munhuweyi, K. (2012). Postharvest losses and changes in quality of vegetables from retail to consumer: a case study of tomato, cabbage and carrot. Unpublished MSc Dissertation. Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, RSA.Google Scholar
  87. Mutari, A. & Debbie, R. (2011). The effects of postharvest handling and storage temperature on the quality and shelf of tomato. African Journal of Food Science, 5(7), 446–452.Google Scholar
  88. Nahman, A. & de Lange, W. (2013). Costs of food waste along the value chain: evidence from South Africa. Waste Management, 33(11), 2493–2500.CrossRefPubMedGoogle Scholar
  89. Nikbakht, A. M., Hashjin, T. T., Malekfar, R., & Gobadian, B. (2011). Nondestructive determination of tomato fruit quality parameters using Raman spectroscopy. Journal of Agricultural Science and Technology, 13, 517–526.Google Scholar
  90. Obopile, M., Munthali, D. C., & Matilo, B. (2008). Farmers’ knowledge, perceptions and management of vegetable pests and diseases in Botswana. Crop Protection, 27(8), 1220–1224.CrossRefGoogle Scholar
  91. Odemero, A. F. & Ngozi, O. R. (2014). Post-harvest properties of tomato and effect on its marketing efficiency. Turkish Journal of Agricultural and Natural Sciences, 1(1), 52–58.Google Scholar
  92. Olakojo, S. A. & Adetula, O. A. (2014). Comparison of qualitative and quantitative traits of some advance breeding lines of tomato (Lycopersicon esculentum L.). African Journal of Plant Science, 8(10), 457–461.CrossRefGoogle Scholar
  93. Olayemi, F. F., Adegbola, J. A., Bamishaiye, E. I., & Daura, A. M. (2010). Assessment of post-harvest challenges of small scale farm holders of tomatoes, bell and hot pepper in some local government areas of Kano State, Nigeria. Bayero Journal of Pure and Applied Sciences, 3(2), 39–42.Google Scholar
  94. Opara, U. L., Al-Ani, R., & Al-Rahbi, N. M. (2011). Effect of fruit ripening stage on physico-chemical properties, nutritional composition and antioxidant components of tomato (Lycopersicum esculentum) cultivars. Food and Bioprocess Technology, 5, 3236–3243.CrossRefGoogle Scholar
  95. Parfitt, J., Barthel, M., & MacNaughton, S. (2010). Food waste within food supply chains: quantification and potential for change to 2050. Philosophical Transactions of the Royal Society, 365, 3065–3081.CrossRefGoogle Scholar
  96. Pinheiro, J., Alegria, C., Abreu, M., Goncalves, E. M., & Silva, C. L. M. (2013). Kinetics of changes in the physical quality parameters of fresh tomato fruits (Solanum lycopersicum, cv. ‘Zinac’) during storage. Journal of Food Engineering, 114, 338–345.CrossRefGoogle Scholar
  97. Pinheiro, J., Alegria, C., Abreu, M., Sol, M., Goncalves, E. M., & Silva, C. L. M. (2014). Postharvest quality of refrigerated tomato fruit (Solanum lycopersicum, cv. Zinac) at two maturity stages following heat treatment. Journal of Food Processing and Preservation. doi: 10.1111/jfpp.12279.Google Scholar
  98. Prusky, D. (2011). Reduction of the incidence of postharvest quality losses and future prospects. Food Security, 3, 463–474.CrossRefGoogle Scholar
  99. Qi, L., Xu, M., Fu, Z., Mira, T., & Zhang, X. (2014). C2SLDS: a WSN-based perishable food shelf-life prediction and LSFO strategy decision support system in cold chain logistics. Food Control, 38, 19–29.CrossRefGoogle Scholar
  100. Qin, J., Chao, K., & Kim, M. S. (2012). Nondestructive evaluation of internal maturity of tomatoes using spatially offset Raman spectroscopy. Postharvest Biology and Technology, 71, 21–31.CrossRefGoogle Scholar
  101. Rembold, F., Hodges, R., Bernard, M., Knipschild, H., & Leo, O. (2011). The African Postharvest Losses Information System (APHLIS). An innovative framework to analyze and compute postharvest losses for cereals under different farming and environmental conditions in East and Southern Africa. Luxembourg: Publication Office of the European Union.Google Scholar
  102. Roy, S.K. and Pal, R.K. (1993). A low-cost cool chamber: An innovative technology for developing countries. In: Champ BR, Highley E, Johnson, GI (eds), AICAR Proceedings on Postharvest Handling of Tropical Fruits, Australia, no. 50, pp 393–395.Google Scholar
  103. Ruiz, D., Audergon, J., Bureau, S., Grotte, M., Renard, C., Gouble, B., et al. (2009). Rapid and non-destructive determination of soluble solids content and titratable acidity in apricot using near-infrared spectroscopy (NIR). Acta Horticulturae, 814, 501–505.CrossRefGoogle Scholar
  104. Samira, A., Woldetsadik, K., & Workneh, T. S. (2013). Postharvest quality and shelf life of some hot pepper varieties. Journal of Food Science and Technology, 50(5), 842–855.CrossRefPubMedPubMedCentralGoogle Scholar
  105. Saran, S., Dubey, N., Mishra, V., Dwivedi, S. K., & Raman, N. L. M. (2013). Evaluation of coolbot™ cool room as a low cost storage system for marginal farmers. Progressive Horticulture, 45(1), 115–121.Google Scholar
  106. Selahle, M. K., Sivakumar, D., & Soundy, P. (2013). Effect of photo-selective nettings on post-harvest quality and bioactive compounds in selected tomato cultivars. Journal of the Science of Food and Agriculture. doi: 10.1002/jsfa.6536.Google Scholar
  107. Sigei, G. K., Ngeno, H. K., Kibe, M. A., Mwangi, M., & Mutai, C. M. (2014). Challenges and strategies to improve tomato competitiveness along the tomato value chain in Kenya. International Journal of Business and Management, 9(9), 205–212.Google Scholar
  108. Sirisomboon, P., Tanaka, M., & Kojima, T. (2011). Evaluation of tomato textural mechanical properties. Journal of Food Engineering, 111(4), 618–624.CrossRefGoogle Scholar
  109. Srinivasa, P. C., Prashanth, K. V. H., Susheelamma, N. S., Ravi, R., & Tharanathan, R. N. (2006). Storage studies of tomato and bell pepper using eco-friendly films. Journal of the Science of Food and Agriculture, 86, 1216–1224.CrossRefGoogle Scholar
  110. Suslow, T. V. (2000). Chlorination in the production and postharvest handling of fresh fruits and vegetables: Chapter G. Fruit and vegetable processing. In D. McLaren (Ed.), Use of chlorine-based sanitizers and disinfectants in the food manufacturing industry. Food processing center (pp. 2–15). Nebraska: University of Nebraska.Google Scholar
  111. Szuvandzsiev, P., Helyes, L., Lugasi, A., Szanto, C., Baranowski, P., & Pel, Z. (2014). Estimation of antioxidant components of tomato using VIS-NIR reflectance data by handheld spectrometer. International Agrophysics, 28, 521–527.CrossRefGoogle Scholar
  112. Thipe, E. L., Workneh, T., Odindo, A., & Laing, M. (2014). Effects of cultivars, growing and storage environments on quality of tomato. International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering, 8(12), 1269–1278.Google Scholar
  113. Tinyane, P. P., Sivakumar, D., & Soundy, P. (2013). Influence of photo-selective netting on fruit quality parameters and bioactive compounds in selected tomato cultivars. Scientia Horticulturae, 161, 340–349.CrossRefGoogle Scholar
  114. Tiwari, G., Slaughter, D. C., & Cantwell, M. (2013). Nondestructive maturity determination in green tomatoes using a handheld visible and near infrared instrument. Postharvest Biology and Technology, 86, 221–229.CrossRefGoogle Scholar
  115. Toivonen, P. M. A. (2007). Fruit maturation and ripening and their relationship to quality. Stewart Postharvest Review, 3, 1–5.CrossRefGoogle Scholar
  116. Tomato Producer Organisation (2014). Tomato Producers’ Organisation. [Internet]. Available at: http://www.tomatoessa.org/index.htm (Accessed: 17th Oct 2015)
  117. Tusiime, S.M. (2014). Evaluating horticultural practices for sustainable tomato production in Kamuli, Uganda. Unpublished MSc Dissertation. Iowa State University, Ames, Iowa, USA.Google Scholar
  118. Ugonna, C. U., Jolaoso, M. A., & Onwualu, A. P. (2015). Tomato value chain in Nigeria: issues, challenges and strategies. Journal of Scientific Research and Reports, 7(7), 501–515.CrossRefGoogle Scholar
  119. UNCTAD (2014). AAACP Products: Tomato. [Internet] Available at: http://www.unctad.info/en/Infocomm/AACP-Products/COMMODITY-PROFILE—Tomato/ (Accessed: 31st July 2014)
  120. Weinberger, K., Genova, C., & Acedo, A. (2008). Quantifying postharvest loss in vegetables along the supply chain in Vietnam, Cambodia and Laos. International Journal of Postharvest Technology and Innovation, 1, 288–297.CrossRefGoogle Scholar
  121. Workneh, T. S., Osthoff, G., & Steyn, M. S. (2009). Integrated agrotechnology with preharvest ComCat® treatment, modified atmosphere packaging and forced ventilation evaporative cooling of tomatoes. African Journal of Biotechnology, 8(5), 860–872.Google Scholar
  122. Workneh, T. S., Osthoff, G., & Steyn, M. S. (2011). Influence of preharvest and postharvest treatments on stored tomato quality. African Journal of Agricultural Research, 6(12), 2725–2736.Google Scholar
  123. Workneh, T. S., Osthoff, G., & Steyn, M. (2012). Effects of preharvest treatment, disinfections, packaging and storage environment on quality of tomato. Journal of Food Science and Technology, 49(6), 685–694.CrossRefPubMedPubMedCentralGoogle Scholar
  124. ZZ2 (2015). Welcome to ZZ2. [Internet]. Available at: http://www.zz2.biz/ (Acessed: 17th Oct 2015).

Copyright information

© Springer Science+Business Media Dordrecht and International Society for Plant Pathology 2016

Authors and Affiliations

  1. 1.School of EngineeringUniversity of KwaZulu-NatalPietermaritzburgSouth Africa

Personalised recommendations