Skip to main content

Crops that feed the world 11. Pearl Millet (Pennisetum glaucum L.): an important source of food security, nutrition and health in the arid and semi-arid tropics

Abstract

Pearl millet is a major cereal in the arid and semi-arid regions of Asia and Africa. It is primarily cultivated for grain production, but its stover is also valued as dry fodder. Pearl millet is resilient to climate change due to its inherent adaptability to drought and high temperatures. It is also tolerant of saline and acid soils, and is well adapted to marginal lands with low productivity. Pearl millet germplasm exhibits large genetic variability for yield components; and various agronomic, adaptation and nutritional traits. Open pollinated varieties and hybrids are two important cultivar options, but higher productivity is realized through hybrids. Pearl millet has fewer pest and disease problems compared to other cereals and is suited to different cropping systems. It is highly responsive to improved crop management practices, as witnessed in parts of India where it is grown as an irrigated summer crop that produces higher yields and better quality grain. Pearl millet has high nutritional value in terms of high levels of energy, dietary fibre, proteins with a balanced amino acid profile, many essential minerals, some vitamins, and antioxidants. These play a significant role in prevention of important human ailments such as diabetes, cancer, cardiovascular and neurodegenerative diseases. There is great potential for harnessing these positive attributes through genetic improvement, improved crop management, and grain processing and food products technologies. These should help to develop greater global awareness of the importance of this crop for food and nutritional security.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Abdalla, A. A., El Tinay, A. H., Mohamed, B. E., & Abdalla, A. H. (1998). Proximate composition, starch, phytate and mineral contents of 10 pearl millet genotypes. Food Chemistry, 63(2), 243–246.

    CAS  Article  Google Scholar 

  • Abdel Rahman, S. M., Babiker, E. E., & El Tinay, A. H. (2005). Effect of fermentation on antinutritional factors and HCl extractability of minerals of pearl millet cultivars. Journal of Food Technology, 3(4), 516–522.

    Google Scholar 

  • Adeola, O., & Orban, J. I. (1995). Chemical composition and nutrient digestibility of pearl millet (Pennisetum glaucum) fed to growing pigs. Journal of Cereal Science, 22, 177–184.

    CAS  Article  Google Scholar 

  • Agricultural Statistics, GOI (2014). Pearl Millet. In Agricultural Statistics at a Glance - 2014, Government of India (pp. 85–86). New Delhi: Oxford University Press.

  • Alais, C., & Linden, G. (1991). Food biochemistry. New York: Ellis Harwood Ltd.

    Book  Google Scholar 

  • Ali, M. A. M., El Tinay, A. H., & Abdalla, A. H. (2003). Effect of fermentation on the in vitro protein digestibility of pearl millet. Food Chemistry, 80, 51–54.

    CAS  Article  Google Scholar 

  • Andrews, D. J. (1974). Responses of sorghum varieties to intercropping. Experimental Agriculture, 10, 57–63.

    Article  Google Scholar 

  • Andrews, D. J., & Kumar, K. A. (1992). Pearl millet for food, feed and forage. Advances in Agronomy, 48, 89–139.

    CAS  Article  Google Scholar 

  • Bagayoko, M., Maman, N., Palé, S., Sirifi, S., Taonda, S. J. B., Traore, S., & Mason, S. C. (2011). Microdose and N and P fertilizer application rates for pearl millet in West Africa. African Journal of Agricultural Research, 6(5), 1141–1150.

    Google Scholar 

  • Bailey, A. V., Piccolo, B., Sumrell, G., & Burton, G. W. (1979). Amino acid profiles, chemical scores, and mineral contents of some pearl millet inbred lines. Journal of Agricultural and Food Chemistry, 27(6), 1421–1423.

    CAS  PubMed  Article  Google Scholar 

  • Barikmo, I., Ouattara, F., & Oshaug, A. (2004). Protein, carbohydrate and fibre in cereals from Mali—how to fit the results in a food composition table and database. Journal of Food Composition and Analysis, 17, 291–300.

    CAS  Article  Google Scholar 

  • Bationo, A., & Mokwunye, A. U. (1991). Role of manures and crop residue in alleviating soil fertility constraints to crop production: with special reference to the sahelian and sudanian zones of West Africa. Fertilizer Research, 29, 117–125.

    Article  Google Scholar 

  • Blümmel, M., & Rai, K. N. (2003). Stover quality and grain yield relationships and heterosis effects in pearl millet. International Sorghum and Millets Newsletter, 44, 141–145.

    Google Scholar 

  • Blümmel, M., Bidinger, F. R., & Hash, C. T. (2007). Management and cultivar effects on ruminant nutritional quality of pearl millet (Pennisetum glaucum (L.) R. Br.) stover II. effects of cultivar choice on stover quality and productivity. Field Crops Research, 103, 129–138.

    Article  Google Scholar 

  • Bornet, F. R. J., Jardy-Gennetier, A.-E., Jacquet, N., & Stowell, J. (2007). Glycemic response to foods: impact on satiety and long-term weight regulation. Appetite, 49, 535–553.

    CAS  PubMed  Article  Google Scholar 

  • Breese, W. A., Hash, C. T., Devos, K. M., & Howarth, C. J. (2002). Pearl millet genomics – an overview with respect to breeding for resistance to downy mildew. In J. F. Leslie (Ed.), Sorghum and millets pathology (pp. 243–246). Ames: Iowa State Press.

    Google Scholar 

  • Brunken, J. N. (1977). A systematic study of Pennisetum sect. Pennisetum (gramineae). American Journal of Botany, 64, 161–176.

    Article  Google Scholar 

  • Brunken, J. N., de Wet, J. M. J., & Harlan, J. R. (1977). The morphology and domestication of pearl millet. Economic Botany, 31, 163–174.

  • Buerkert, A., Moser, M., Kumar, A. K., Fürst, P., & Becker, K. (2001). Variation in grain quality of pearl millet from sahelian West Africa. Field Crops Research, 69, 1–11.

    Article  Google Scholar 

  • Burton, G. W., Wallace, A. T., & Rachie, K. O. (1972). Chemical composition and nutritive value of pearl millet [Pennisetum typhoides (burm.) stapf and E. C. Hubbard] grain. Crop Science, 12, 187–188.

    CAS  Article  Google Scholar 

  • Carnovale, E., Lugaro, E., & Lombardi-Boccia, G. (1988). Phytic acid in faba bean and pea: effect on protein availability. Cereal Chemistry, 65, 114–117.

    CAS  Google Scholar 

  • Chandrasekara, A., & Shahidi, F. (2011a). Antiproliferative potential and DNA scission inhibitory activity of phenolics from whole millets. Journal of Functional Foods, 3, 159–170.

    CAS  Article  Google Scholar 

  • Chandrasekara, A., & Shahidi, F. (2011b). Bioactivities and antiradical properties of millet grains and hulls. Journal of Agricultural and Food Chemistry, 59, 9563–9571.

    CAS  PubMed  Article  Google Scholar 

  • Chandrasekara, A., & Shahidi, F. (2011c). Determination of antioxidant activity in free and hydrolyzed fractions of millet grains and characterization of their phenolic profiles by HPLC-DAD-ESI-MSn. Journal of Functional Foods, 3, 144–158.

    CAS  Article  Google Scholar 

  • Chandrasekher, G., Raju, D. S., & Pattabiraman, T. N. (1981). Natural plant enzyme inhibitors. α-amylase inhibitors in millets. Journal of the Science of Food and Agriculture, 32, 9–16.

    CAS  Article  Google Scholar 

  • Chandrasekher, G., Raju, D. S., & Pattabiraman, T. N. (1982). Natural plant enzyme inhibitors. Protease inhibitors in millets. Journal of the Science of Food and Agriculture, 33, 447–450.

    CAS  Article  Google Scholar 

  • Chauhan, B. M., Suneja, N., & Bhat, C. M. (1986). Nutritive value and fatty acid composition of some high yielding varieties of bajra. Bulletin of Grain Technology, 21, 441–442.

    Google Scholar 

  • Clark, J. D. (1962). Thc spread of food production in sub-Saharan Africa. The Journal of African History, 3, 211–228.

    Article  Google Scholar 

  • Clark, J. D. (1964). The prehistoric origins or African culture. The Journal of African History, 5, 61–183.

    Article  Google Scholar 

  • Clayton, W. D. (1972). Gramineae. In F. N. Hepper (Ed.), Flora of West Tropical Africa (pp. 170–465). London: Crown Agents.

    Google Scholar 

  • Dahlberg, J.A., Wilson, J.P., & Snyder, T. (2003). Sorghum and pearl millet: health foods and industrial products in developed countries. In Alternative uses of sorghum and pearl millet in Asia. Proceedings of expert meeting (pp. 42–59). Patancheru: ICRISAT.

  • de Wet, J. M. J. (1977). Domestication of African cereals. African Economic History, 3, 15–32.

    Article  Google Scholar 

  • de Wet, J. M. J., Bidinger, F. R., & Peacock, J. M. (1992). Pearl millet (Pennisetum glaucum) – a cereal of the Sahel. In G. P. Chapman (Ed.), Desertified grasslands, their biology, and management (pp. 259–267). London: Academic Press.

    Google Scholar 

  • Desai, B. B., & Zende, G. K. (1979). Role of bajra (Pennisetum typhoides) in human and animal nutrition. Journal of Nutrition and Dietetics, 16, 390.

    CAS  Google Scholar 

  • Dykes, L., & Rooney, L. W. (2006). Sorghum and millet phenols and antioxidants. Journal of Cereal Science, 44, 236–251.

    CAS  Article  Google Scholar 

  • Dykes, L., & Rooney, L. W. (2007). Phenolic compounds in cereal grains and their health benefits. Cereal Foods World, 52(3), 105–111.

    CAS  Google Scholar 

  • Ejeta, G., Hassen, M. M., & Mertz, E. (1987). In vitro digestibility and amino acid composition of pearl millet (Pennisetum typhoides) and other cereals (pepsin digestibility/protein fractionation/protein quality). PNAS, USA, 84, 6016–6019.

    CAS  Article  Google Scholar 

  • Elyas, S. H. A., El Tinay, A. H., Yousif, N. E., & Elsheikh, E. A. E. (2002). Effect of natural fermentation on nutritive value and in vitro protein digestibility of pearl millet. Food Chemistry, 78, 75–79.

    CAS  Article  Google Scholar 

  • Esterbauer, H. (1993). Cytotoxicity and genotoxicity of lipid oxidation products. American Journal of Clinical Nutrition, 57, 7795–7855.

    Google Scholar 

  • FAO. (1995). Chemical composition and nutritive value. In Sorghum and millets in human nutrition (pp. 49–86). Rome: FAO Food and Nutrition Series (No. 27).

  • FAO, & ICRISAT. (1996). “The World Sorghum and Millet Economies: Facts, Trends and Outlook”. http://www.fao.org/docrep/W1808E/w1808e00.htm#Contents.

  • FAOSTAT. (2015) http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567. Accessed on 24/07/2015 & 29/10/2015.

  • Foster-Powell, K., Holt, S. H. A., & Brand-Miller, J. C. (2002). International table of glycemic index and glycemic load values. American Journal of Clinical Nutrition, 76, 5–56.

    CAS  PubMed  Google Scholar 

  • Fussell, L.K., Serafini, P.G., Bationo, A. & Klaij, M.C. (1987). Management practices to increase yield and yield stability of pearl millet in Africa. In Proceedings of the international Pearl Millet Workshop, 7–11 April 1986, ICRISAT Center, India (pp. 255–267). Patancheru: ICRISAT.

  • Fussell, L. K., Bidinger, F. R., & Bider, P. (1991). Crop physiology and breeding for drought resistance, research and development. Field Crops Research, 27, 183–199.

    Article  Google Scholar 

  • Gautam, R.C. (1990). Resource management to stabilize and improve productivity of dryland pearl millet in India. In International Symposium, IARI, New Delhi.

  • Geetha, R., Virupaksha, T. K., & Shadaksharaswamy, M. (1997). Relationship between tannin levels and in vitro protein digestibility in finger millet (Eleusine coracana). Journal of Agricultural and Food Chemistry, 25, 1101–1108.

    Google Scholar 

  • Gowda, C. L. L., Rai, K. N., Reddy, B. V. S., & Saxena, K. B. (2006). Hybrid parents research at ICRISAT. Patancheru: International Crops Research Institute for the Semi-Arid Tropics.

  • Hadimani, N. A., Muralikrishna, G., Tharanathan, R. N., & Malleshi, N. G. (2001). Nature of carbohydrates and proteins in three pearl millet varieties varying in processing characteristics and kernel texture. Journal of Cereal Science, 33, 17–25.

    CAS  Article  Google Scholar 

  • Hag, M. E., Tinay, A. H., & Yousif, N. E. (2002). Effect of fermentation and dehulling on starch, total polyphenols, phytic acid content and in vitro protein digestibility of pearl millet. Food Chemistry, 77, 193–196.

    Article  Google Scholar 

  • Hamdy, M. M. (1971). Interaction between phosphates & plant proteins. In J. M. DeMan (Ed.), Symposium - phosphates in food processing (p. 83). Westport: Avi Publishing Company.

    Google Scholar 

  • Hanna, W. W. (1987). Utilization of ild relatives of pearl millet. In J. R. Witcombe, & S. R. Beckerman (Eds.), Proceedings of international pearl millet workshop (pp. 33–42). Patancheru: ICRISAT Center.

    Google Scholar 

  • Harlan, J.R. (1975) Crops and man. American Society of Agronomy and Crop Science Society of America (pp. 295). Madison.

  • Hay, F. R., Hamilton, R. S., Furman, B. J., Upadhyaya, H. D., Reddy, K. N., & Singh, S. K. (2013). Cereals. In M. N. Normah, H. F. Chin, & B. M. Reed (Eds.), Conservation of tropical plant species (pp. 293–316). New York: Springer.

    Chapter  Google Scholar 

  • Hulse, J. H., Laing, E. M., & Pearson, O. E. (1980). Sorghum and the millets: their composition and nutritive value. New York: Academic Press.

    Google Scholar 

  • Jakhar, S. R., Singh, M., & Balia, C. M. (2006). Effect of farmyard manure, phosphorus and zinc levels on growth, yield, quality and economics of pearl millet (Pennisetum glaucum). Indian Journal of Agricultural Sciences, 76(1), 58–61.

    Google Scholar 

  • Jellum, M. D., & Powell, J. B. (1971). Fatty acid composition of oil from pearl millet seed. Agronomy Journal, 63, 29.

    CAS  Article  Google Scholar 

  • Johari, A., Kawatra, A., & Potaliya, M. (2015). Development and organoleptic evaluation of pearl millet and rice based gluten free upma for celiac disease patients. Annals of Agri Bio Research, 20(1), 143–144.

    Google Scholar 

  • Jukanti, A. K., Gaur, P. M., Gowda, C. L. L., & Chibbar, R. N. (2012). Nutritional quality and health benefits of chickpea (Cicer arietinum L.): a review. British Journal of Nutrition, 108, S11–S26.

    CAS  PubMed  Article  Google Scholar 

  • Kamath, M. V., & Belavady, B. (1980). Unavailable carbohydrates of commonly consumed Indian foods. Journal of the Science of Food and Agriculture, 31, 194–202.

    CAS  Article  Google Scholar 

  • Kampa, M., Alexaki, V.-I., Notas, G., Nifli, A. P., Nistikaki, A., Hatzoglou, A., et al. (2004). Antiproliferative and apoptotic effects of selective phenolic acids on T47D human breast cancer cells: potential mechanisms of action. Breast Cancer Research, 6, R63–R74.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Khairwal, I. S., Ram, C., & Chhabra, A. K. (1990). Pearl millet seed production and technology (pp. 208). New Delhi: Manohar Publications.

    Google Scholar 

  • Khairwal, I. S., Rai, K. N., Diwakar, B., Sharma, Y. K., Rajpurohit, B. S., Nirwan, B., & Bhattacharjee, R. (2007). Pearl millet: crop management and seed production manual (pp. 104). Patancheru: ICRISAT.

    Google Scholar 

  • Khalil, J. K., & Sawaya, W. N. (1984). Mineral and vitamin contents of Saudi Arabian pearl millet flour and bread. Cereal Chemistry, 61(4), 301–304.

    CAS  Google Scholar 

  • Khetarpaul, N., & Chauhan, B. H. (1991). Effect of natural fermentation on phytate and polyphenolic content and in vitro digestibility of starch and protein in pearl millet (Pennisetum typhodeum). Journal of the Science of Food and Agriculture, 55, 189–195.

    Article  Google Scholar 

  • Kholová, J., Hash, C. T., Kakkera, A., Kočová, M., & Vadez, V. (2010a). Constitutive water-conserving mechanisms are correlated with the terminal drought tolerance of pearl millet [Pennisetum glaucum (L.) R. Br.]. Journal of Experimental Botany, 61(2), 369–377.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Kholová, J., Hash, C. T., Lava Kumar, P., Yadav, R. S., Kočová, M., & Vadez, V. (2010b). Terminal drought-tolerant pearl millet (Pennisetum glaucum (L.) R. Br.) have high leaf ABA and limit transpiration at high vapor pressure deficit. Journal of Experimental Botany, 61, 1431–1441.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Klopfenstein, C. F., & Hoseney, R. C. (1995). Nutritional properties of sorghum and the millets. In D. A. V. Dendy (Ed.), Sorghum and millets: chemistry and technology (pp. 125–168). St. Paul: American Association of Cereal Chemistry.

    Google Scholar 

  • Knuckles, B. E., Kuzmicky, D. D., & Betschart, A. A. (1985). Effect of phytate and partially hydrolysed phytate on in vitro protein digestibility. Journal of Food Science, 52, 1080–1082.

    Article  Google Scholar 

  • Kountche, B. A., Hash, C. T., Dodo, H., Laoualy, O., Sanogo, M. D., Timbeli, A., Vigouroux, Y., This, D., Nijkamp, R., & Haussmann, B. I. G. (2013). Development of a pearl millet Striga-resistant genepool: response to five cycles of recurrent selection under Striga-infested field conditions in West Africa. Field Crops Research, 154, 82–90.

    Article  Google Scholar 

  • Krishna, K. R. (2014). Agroecosystem: soils, climate, crops, nutrient dynamics and productivity pp 1–553. New Jersey: Apple Academic Press Inc.

  • Kumar, A., & Chauhan, B. M. (1993). Effect of phytic acid on protein digestibility (in vitro) and HCl-extractability of minerals in pearl millet sprouts. Cereal Chemistry, 70(5), 504–506.

    CAS  Google Scholar 

  • Lai, C. C., & Varriano-Marston, E. (1980). Lipid content and fatty acid composition of free and bound lipids in pearl millets. Cereal Chemistry, 57(4), 271–274.

    CAS  Google Scholar 

  • Léder, I. (2004). Sorghum and millets: cultivated plants, primarily as food sources. In: G. Füleky (Ed.), Encyclopedia of life support systems (EOLSS). Oxford: EOLSS Publishers [http://www.eolss.net].

    Google Scholar 

  • Mahalakshmi, V., & Bidinger, F. R. (1985). Water stress and time of floral initiation in pearl millet. Journal of Agricultural Science, 105, 237–239.

    Article  Google Scholar 

  • Maiti, R. K., & Bisen, S. S. (1979). Pearl millet anatomy. patancheru, A.P. India: ICRISAT.

    Google Scholar 

  • Malleshi, N. G., & Desikachar, H. S. R. (1986). Studies on comparative malting characteristics of some tropical cereals millets. Journal of the Institute of Brewing, 92, 174–176.

    CAS  Article  Google Scholar 

  • Mani, U. V., Prabhu, B. M., Damle, S. S., & Mani, I. (1993). Glycemic index of some commonly consumed foods in Western India. Asia Pacific Journal of Clinical Nutrition, 2, 111–114.

    CAS  PubMed  Google Scholar 

  • Marchais, L., & Tostain, S. (1993). Evaluation de la diversité génétique des Mils (Pennisetum glaucum, (L.) R. BR.) au moyen de marqueurs enzymatiques et relation entre formes sauvages et cultivées. In S. Hamon (Ed.) Le mil en Afrique diversité génetiqué et agrophysiologique: Potentialités et contraintes pour lamélioration génétique et lagriculture. Actes de la reunion thématique sur le mil (Pennisetum glaucum, L.), Montpellier du 24 au 26 novembre 1992.

  • McDonough, C. M., Rooney, L. W., & Serna-Saldivar, S. O. (2000). The millets. In K. Kulp, & J. G. Ponte (Eds.), Handbook of cereal science and technology (pp. 177–202). New York,: Marcel Dekker Inc.

    Google Scholar 

  • Mula, R. P., Rai, K. N., & Yadav, S. K. (2010). Case study of adoption of a pearl millet variety in a non-target region. SAT eJournal, 8, 1–5.

    Google Scholar 

  • Murthy, M.V.R., Singh, P., Wani, S.P., Khairwal, I.S., & Srinivas K. (2007). Yield gap analysis of sorghum and pearl millet in India using simulation modelling. In Global Theme on Agroecosystems Report No. 37 (pp. 82). Patancheru: ICRISAT.

  • Nagaraj, N., Basavaraj, G., Rao, P. P., & Bantilan, C. (2012). Future outlook and options for target crops: the sorghum and pearl millet economy of India. policy brief No. 15. Patancheru: ICRISAT.

    Google Scholar 

  • Nambiar, V. S., Dhaduk, J. J., Sareen, N., Shahu, T., & Desai, R. (2011). Potential functional implications of pearl millet (Pennisetum glaucum) in health and disease. Journal of Applied Pharmaceutical Sciences, 1(10), 62–67.

    Google Scholar 

  • Nardini, M., D'Aquino, M., Tomassi, G., Gentili, V., Di Felice, M., & Scaccini, C. (1995). Inhibition of human low density lipoprotein oxidation by caffeic acid and other hydroxycinnamic acid derivatives. Free Radical Biology & Medicine, 19, 541–552.

    CAS  Article  Google Scholar 

  • Ndjeunga, J., Umar, J., Ahmed, B., Aba, A., Ibro, A., Abdoulaye, A., & Gwadi, K. (2011). Adoption and impacts of modern sorghum and pearl millet varieties in Northern Nigeria. Working Paper Series no XXXX (pp. 1–81). Patancheru: ICRISAT.

  • Nedumaran, S., Bantilan, M. C. S., Gupta, S. K., Irshad, A., & Davis, J. S. (2014). Potential welfare benefit of millets improvement research at ICRISAT: multi country-economic surplus model approach, Series Paper Number: 15. Hyderabad: ICRISAT.

    Google Scholar 

  • Nepolean, T., Gupta, S. K., Dwivedi, S. L., Bhattacharjee, R., Rai, K. N., & Hash, C. T. (2012). Genetic diversity in maintainer and restorer lines of pearl millet. Crop Science, 52, 2555–2563.

    CAS  Article  Google Scholar 

  • NFSM (National Food Security Mission), (2014). Status paper on coarse cereals (sorghum, pearl millet, finger millet, small millets, maize and barley). Ministry of Agriculture, Government of India.

  • Nicou, R., & Charreau, C. (1985). Soil tillage and water conservation in semi-arid West Africa. In H. W. Ohm, & J. G. Magy (Eds.), Appropriate Technologies for farmers in semi-arid West Africa (pp. 9–32). West Lafayette: Purdue University.

    Google Scholar 

  • Oluwasemire, K. O., Stigter, C. J., Owomki, J. J., & Jagtop, S. S. (2002). Seasonal water use and crop productivity of millet-based cropping systems in the Nigerian Sudan Savannah near Kano. Agricultural Water Management, 56, 207–227.

    Article  Google Scholar 

  • Osman, M. A. (2011). Effect of traditional fermentation process on the nutrient and antinutrient contents of pearl millet during preparation of lohoh. Journal of Saudi Society of Agricultural Science, 10, 1–6.

    CAS  Article  Google Scholar 

  • Ouattara, B., Hien, V., & Lompo, F. (1999). Development of water management technologies for rainfed crops in Burkina Faso. In M. Pala, C. Studer, & M. Bielders (Eds.), Efficient soil water use: the key to sustainable crop production in the dry areas of West Asia and North and Sub-Saharan Africa (pp. 265–281). Patancheru: Aleppo/ICRISAT.

    Google Scholar 

  • Panaud, O. (2006). Foxtail millet. In K. Chittaranjan (Ed.), Cereals and millet (pp. 325–332). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Poonam (2002). Effect of acid and heat treatment on nutrient composition and shelf life of pearl millet (Pennisetum glaucum) flour, M.Sc. thesis (pp. 106). Hisar: CCS Haryana Agricultural University.

    Google Scholar 

  • Porteres, R. (1976). African cereals: eleusine, fonio, black fonio, teff, Brachiaria, Paspalum, Pennisetum and African rice. In J. Harlan, J. de Wet, A. Stemler (Eds.), Origins of african plant domestication (pp. 409–452). La Hague: Mouton Publishers.

  • Raboy, V. (1990). The biochemistry and genetics of phytic acid synthesis. In D. J. Morre, W. Boss, & F. A. Loewus (Eds.), Inositol metabolism in plants (pp. 52–73). New York: Alan R Liss.

    Google Scholar 

  • Raboy, V. (1997). Accumulation and storage of phosphate and minerals. In B. A. Larkins, & I. K. Vasil (Eds.), Cellular and molecular biology of plant seed development (pp. 441–477). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Ragaee, S., Abdel-Aal, E. M., & Noaman, M. (2006). Antioxidant activity and nutrient composition of selected cereals for food use. Food Chemistry, 98, 32–38.

    CAS  Article  Google Scholar 

  • Rai, K. N., Murty, D. S., Andrews, D. J., & Bramel-Cox, P. J. (1999). Genetic enhancement of pearl millet and sorghum for the semi-arid tropics of Asia and Africa. Genome, 42, 617–628.

    Article  Google Scholar 

  • Rai, K. N., Kulkarni, V. N., Thakur, R. P., Haussmann, B. I. G., & Mgonja, M. A. (2006). Pearl millet hybrid parents research: approaches and achievements. In C. L. L. Gowda, K. N. Rai, B. V. S. Reddy, & K. B. Saxena (Eds.), Hybrid parents research at ICRISAT (pp. 11–74). Patancheru: ICRISAT.

    Google Scholar 

  • Rai, K. N., Gowda, C. L. L., Reddy, B. V. S., & Sehgal, S. (2008). The potential of sorghum and pearl millet in alternative and health food uses. Comprehensive Reviews in Food Science and Food Safety, 7, 340–352.

    Google Scholar 

  • Rai, K. N., Govindaraj, M., & Rao, A. S. (2012). Genetic enhancement of grain iron and zinc content in pearl millet. Quality Assurance & Safety of Crops and Food, 4(3), 119–125.

    CAS  Article  Google Scholar 

  • Rai, K. N., Patil, H. T., Yadav, O. P., Govindaraj, M., Khairwal, I. S., Cherian, B., Rajpurohit, B. S., Rao, A. S., Shivade, H., & Kulkarni, M. P. (2014). Dhanashakti: A high-iron pearl millet variety. Indian Farming, 64(7), 32–34.

    Google Scholar 

  • Rao, S.R., Lal, B.B., Nath, B., Ghosh, S.S., & Lal, K. (1963). Excavations at Rangpur and other explorations in Gujarat. Bulletin of the Archaeological Survey of India, 18–19, 5–207.

  • Reichert, R. D., Youngs, C. G., & Christensen, D. A. (1980). Polyphenols in Pennisetum millet. In J. H. Hulse (Ed.), Polyphenols in cereals and legumes (pp. 50–60). Ottawa: International Development Research Centre.

    Google Scholar 

  • Rekha (1997). Efficacy of processing techniques in the utilization of pearl millet for value added products, M.Sc. thesis (p. 125). Hisar: CCS Haryana Agricultural University.

    Google Scholar 

  • Rooney, L. W. (1978). Sorghum and pearl millet lipids. Cereal Chemistry, 55(5), 584–590.

    CAS  Google Scholar 

  • Rooney, L. W., & McDonough, C. M. (1987). Food quality and consumer acceptance of pearl millet. In J. R. Witcombe, & S. R. Beckerman (Eds.), Proceedings of the international pearl millet workshop (pp. 43–61). Patancheru: ICRISAT.

    Google Scholar 

  • Sankara Rao, D. S., & Deosthale, Y. G. (1983). Mineral composition, ionizable iron, and soluble zinc in malted grains of pearl millet and ragi. Food Chemistry, 11, 211–217.

    Google Scholar 

  • Sawaya, W. N., Khalil, J. K., & Safi, W. J. (1984). Nutritional quality of pearl millet flour and bread. Plant Foods for Human Nutrition, 34(2), 117–125.

    Article  Google Scholar 

  • Serraj, R., Hash, C. T., Rizvi, S. M. H., Sharma, A., Yadav, R. S., & Bidinger, F. R. (2005). Recent advances in marker-assisted selection for drought tolerance in pearl millet. Plant Protection Science, 8, 334–337.

    Article  Google Scholar 

  • Sharma, C. B., Goel, M., & Irshad, M. (1978). Myo-inositol hexaphosphate as a potential inhibitor of amylase. Phytochemistry, 17, 201–204.

    CAS  Article  Google Scholar 

  • Sharma, R., Upadhyaya, H. D., Manjunatha, S. V., Rai, K. N., Gupta, S. K., & Thakur, R. P. (2013). Pathogenic variation in the pearl millet blast pathogen Magnaporthe grisea and identification of resistance to diverse pathotypes. Plant Disease, 97(2), 189–195.

    Article  Google Scholar 

  • Singh, G. (2003). Development and nutritional evaluation of value added products from pearl millet (Pennisetum glaucum). Ph. D thesis. Hisar: CCS Haryana Agricultural University.

    Google Scholar 

  • Smalling, E. M. A., Stoorvogel, J. J., & Sindmeijer, P. N. (1993). Calculating soil nutrient balances in Africa at different scales: II. district scale. Fertilizer Research, 35, 237–250.

    Article  Google Scholar 

  • Sritharan, R., Potter, J. W., Anand Kumar, K., & Dangi, O. P. (2007). Crop rotation with forage pearl millet for control of root-lesion nematodes in on-farm trials with potato. Journal of New Seeds, 8(3), 51–61.

    Article  Google Scholar 

  • Stapf, O. & C.E. Hubbard, C.E. (1934). Pennisetum. In D. Prain (Ed.) The flora of tropical Africa Vol. 9. London: Crown Agents.

  • Stroosnijder, L., & Hoogmoed, W. (2004). The contribution of soil & water conservation to carbon sequestration in semi-arid Africa. Bulletin Réseau Erosion, 23, 528–539.

    Google Scholar 

  • Sumathi, A., Ushakumari, S. R., & Malleshi, N. G. (2007). Physico-chemical characteristics, nutritional quality and shelf life of pearl millet based extrusion cooked supplementary foods. International Journal of Food Science and Nutrition, 58, 350–362.

    CAS  Article  Google Scholar 

  • Thorne, M. J., Thompson, L. U., & Jenkins, D. J. A. (1983). Factors affecting starch digestibility and glycaemic response with reference to legumes. American Journal of Clinical Nutrition, 38, 481–488.

    CAS  PubMed  Google Scholar 

  • Timper, P., Brenneman, T. B., Hanna, W. W., & Wilson, J. P. (2007). Pearl millet as a rotation crop for peanut. Plant Health Progress. doi:10.1094/PHP-2007-0202-02-RS.

    Google Scholar 

  • Tosh, S. M., & Yada, S. (2010). Dietary fibres in pulse seeds and fractions: characterization, functional attributes, and applications. Food Research International, 43, 450–460.

    CAS  Article  Google Scholar 

  • Vadez, V., Krishnamurthy, L., Kashiwagi, J., Kholová, J., Devi, J. M., Sharma, K. K., Bhatnagar-Mathur, P., Hoisington, D. A., Hash, C. T., Bidinger, F. R., & Keatinge, J. D. H. (2007). Exploiting the functionality of root systems for dry, saline, and nutrient deficient environments in a changing climate. ICRISAT and CGIAR 35th anniversary symposium ‘climate-proofing innovation for poverty reduction and food security’. Journal of SAT Agricultural Research, 4, 1–61.

    Google Scholar 

  • van Duivenbooden, N., Pala, M., Stuber, C., Bielders, C. L., & Beukes, D. J. (2000). Cropping systems and crop complementarity in dryland agriculture to increase soil water use efficiency: a review. Netherlands Journal of Agricultural Science, 48, 213–236.

    Google Scholar 

  • Varriano-Marston, E., & Hoseney, R. C. (1980). Note on mineral content and location in pearl millet. Cereal Chemistry, 57, 150.

  • White, P. J., & Xing, Y. (1997). Antioxidants from cereals and legumes. In F. Shahidi (Ed.), Natural antioxidants: chemistry, health effects, and applications (pp. 25–63). Champaign: American Association of Cereal Chemistry Press.

    Google Scholar 

  • Wilson, J. P., Hess, D. E., Hanna, W. W., Kumar, K. A., & Gupta, S. C. (2004). Pennisetum glaucum subsp. monodii Accessions with Striga resistance in West Africa. Crop Protection, 23, 865–870.

    Article  Google Scholar 

  • Yadav, R. S., Hash, C. T., Bidinger, F. R., Cavan, G. P., & Howart, C. J. (2002). Quantitative trait loci associated with traits determining grain and stover yield in pearl millet under terminal drought-stress conditions. Theoretical and Applied Genetics, 104, 67–83.

    CAS  PubMed  Article  Google Scholar 

  • Yadav, R. S., Hash, C. T., Bidinger, F. R., Devos, K. M., & Howarth, C. J. (2004). Genomic regions associated with grain yield and aspects of post-flowering drought tolerance in pearl millet across stress environments and testers background. Euphytica, 136, 265–277.

    CAS  Article  Google Scholar 

  • Yadav O.P., Rai K.N., Rajpurohit B.S., Hash C.T., Mahala R.S., Gupta S.K., Shetty H.S., Bishnoi H.R., Rathore M.S., Kumar A., Sehgal S., & Raghvani K.L. (2012). Twenty-five years of pearl millet improvement in India. In: All India Coordinated Pearl Millet Improvement Project (pp. 1–122), Jodhpur.

Download references

Acknowledgments

We would like to thank Dr. M. Govindaraj, Scientist, ICRISAT, India and Mr. Prakash Kalwani, Senior Research Fellow, ICAR-CAZRI, India for helping us with preparation of the manuscript. Partial funding support to KNR from HarvestPlus Biofortification Program of the CGIAR is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K . Jukanti.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jukanti, A.K..., Gowda, C.L.L., Rai, K.N. et al. Crops that feed the world 11. Pearl Millet (Pennisetum glaucum L.): an important source of food security, nutrition and health in the arid and semi-arid tropics. Food Sec. 8, 307–329 (2016). https://doi.org/10.1007/s12571-016-0557-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12571-016-0557-y

Keywords

  • Pearl millet
  • Adaptations
  • Production constraints
  • Crop management
  • Nutrition
  • Health