Food Security

, Volume 8, Issue 2, pp 375–388

Participatory appraisal of preferred traits, production constraints and postharvest challenges for cassava farmers in Rwanda

  • Athanase Nduwumuremyi
  • Rob Melis
  • Paul Shanahan
  • Theodore Asiimwe
Original Paper


Physiological postharvest deterioration (PPD) and late bulking are among the traits that make cassava an unattractive crop in many environments. This study aimed at assessing the main constraints of cassava production, the effects of late bulking, the losses due to PPD and the factors affecting adoption of new cultivars in Rwanda. A participatory rural appraisal (PRA) and a baseline survey were conducted in March-May 2014 in three agro-ecological zones in the country using a multistage sampling method. Cassava was grown on 0.29 ha out of 0.69 ha total average land possession per household. The majority of cassava farmers (59.1 %) practised intercropping as their land holding is small. Average yield was 21.8 t ha−1. A number of constraints was identified, particularly the lack of clean cuttings, viral diseases, late bulking cultivars, drought, limited information and knowledge, weathered soils, insufficient fertilizers, land shortage, lack of markets and effective storage techniques. Loss due to PPD was estimated at 11.9 % of total production per year. Piecemeal harvest and underground storage of roots were the main practices used to delay PPD. Change in colour and taste, rotting, difficulty in removing skin and increase of fibres in the flesh were the farmers’ methods for assessing PPD. Time to harvest varied from district to district and was attributed to genetic x environment interactions. The use of late bulking varieties and the lack of yield production of other crops resulted in reduced food availability and potential food crises. Farmer preferences, information and extension services, performance, quality, market acceptability and cutting production influenced the adoption of new cassava cultivars. Thus, breeding objectives targeting the end user preferences could enhance the adoption of new cultivars.


Carotenoid, cultivar adoption End-user preferences Farming system Late bulking Physiological postharvest deterioration, storage techniques 


  1. Abalaka, A. (2012). Comparative Effects of Cassava Starch and Simple Sugar in Cement Mortar and Concrete. ATBU Journal of Environmental Technology, 4, 13–22.Google Scholar
  2. Bayoumi, S. A., Rowan, M. G., Beeching, J. R., & Blagbrough, I. S. (2010). Constituents and secondary metabolite natural products in fresh and deteriorated cassava roots. Phytochemistry, 71, 598–604.CrossRefPubMedGoogle Scholar
  3. Bull, S. E., Ndunguru, J., Gruissem, W., Beeching, J. R., & Vanderschuren, H. (2011). Cassava: constraints to production and the transfer of biotechnology to African laboratories. Plant Cell Reports, 30, 779–787. doi:10.1007/s00299-010-0986-6.CrossRefPubMedGoogle Scholar
  4. Catley, A., Burns, J., Abebe, D., & Suji, O. (2007). Participatory Impact Assessment (p. 63). A Guide for Practitioners. Feinstein International Center: Tufts University, Medford, USA.Google Scholar
  5. Ceballos, H., Iglesias, C. A., Perez, J. C., & Dixon, A. G. (2004). Cassava breeding: opportunities and challenges. Plant Molecular Biology, 56, 503–516.CrossRefPubMedGoogle Scholar
  6. Ceccarelli, S. (2006). Decentralized-Participatory Plant Breeding. In M. H. D. Desclaux (Ed.), Lessons from the South-Perspectives in the North. Besse: Participatory Plant Breeding: Relevance for Organic Agriculture.Google Scholar
  7. El-Sharkawy, M. A. (2004). Cassava biology and physiology. Plant Molecular Biology, 56, 481–501. doi:10.1007/s11103-005-2270-7.CrossRefPubMedGoogle Scholar
  8. Fao (2000). The world cassava economy, Treds (p. 46). Rome, Italy: Facts and Outlook. FAO.Google Scholar
  9. Faostat (2011). FAOSTAT database. Rome, Italy: FAO.Google Scholar
  10. Hillocks, R., & Jennings, D. (2003). Cassava brown streak disease: a review of present knowledge and research needs. International Journal of Pest Management, 49, 225–234.CrossRefGoogle Scholar
  11. Hilton, A., & Armstrong, R. A. (2006). Statnote 6: Post-hoc ANOVA tests. Microbiologist, 2006, 34–36.Google Scholar
  12. Howeler, R., Lutaladio, N., & Thomas, G. (2013). Save and grow: cassava. Rome, Italy: FAO.Google Scholar
  13. Kamau, J., Melis, R., Laing, M., Derera, J., Shanahan, P., Eliud, C., et al. (2011). Farmers’ participatory selection for early bulking cassava genotypes in semi-arid Eastern Kenya. Journal of Plant Breeding and Crop Science, 3, 44–52.Google Scholar
  14. Kamau, J. W. (2006). Participatory-based development of early bulking cassava varieties for the semi-arid areas of Eastern Kenya. Pietermaritzburg: University of KwaZulu-Natal.Google Scholar
  15. Kanbar, A., & Shashidhar, H. E. (2011). Participatory selection assisted by DNA markers for enhanced drought resistance and productivity in rice (Oryza sativa L.). Euphytica, 178, 137–150.CrossRefGoogle Scholar
  16. Kpémoua, K., Boher, B., Nicole, M., Calatayud, P., & Geiger, J. (1996). Cytochemistry of defense responses in cassava infected by Xanthomonas campestris pv. manihotis. Canadian Journal of Microbiology, 42, 1131–1143.CrossRefGoogle Scholar
  17. Luna, E., Pastor, V., Robert, J., Flors, V., Mauch-Mani, B., & Ton, J. (2011). Callose deposition: a multifaceted plant defense response. Molecular Plant-Microbe Interactions, 24, 183–193.CrossRefPubMedGoogle Scholar
  18. Mbwika, M. J. and Mayala. (2001). Cassava sub-sector analysis outline. IITA.Google Scholar
  19. Mkumbira, J., Chiwona-Karltun, L., Lagercrantz, U., Mahungu, N. M., Saka, J., Mhone, A., et al. (2003). Classification of cassava into ‘bitter’and ‘cool’in Malawi: From farmers' perception to characterisation by molecular markers. Euphytica, 132, 7–22.CrossRefGoogle Scholar
  20. Morante, N., Sánchez, T., Ceballos, H., Calle, F., Pérez, J. C., Egesi, C., et al. (2010). Tolerance to postharvest physiological deterioration in cassava roots. Crop Science, 50, 1333–1338. doi:10.2135/cropsci2009.11.0666.CrossRefGoogle Scholar
  21. Munga, T. L. (2008). Breeding for Cassava Brown Streak Resistance in Coastal Kenya. University of KwaZulu-Natal: Republic of South Africa.Google Scholar
  22. Night, G., Asiimwe, T., Gashaka, G., Nkezabahizi, D., Legg, J. P., Okao-Okuja, G., et al. (2011). Occurrence and distribution of cassava pests and diseases in Rwanda. Agriculture, Ecosystems and Environment, 140, 492–497.CrossRefGoogle Scholar
  23. Okafor, F. (2008). The Potentials of Cassava Flour As a Set-Retarding Admixture in Concrete. Nigerian Journal of Technology, 27, 1–8.Google Scholar
  24. Ravi, V., Aked, J., & Balagopalan, C. (1996). Review on tropical root and tuber crops I. Storage methods and quality changes. Critical Reviews in Food Science & Nutrition, 36, 661–709.CrossRefGoogle Scholar
  25. Reilly, K., Bernal, D., Cortés, D., Gómez-Vásquez, R., Tohme, J., & Beeching, J. (2007). Towards identifying the full set of genes expressed during cassava post-harvest physiological deterioration. Plant Molecular Biology, 64, 187–203. doi:10.1007/s11103-007-9144-0.CrossRefPubMedGoogle Scholar
  26. Rios, J. J., Fernández-García, E., Mínguez-Mosquera, M. I., & Pérez-Gálvez, A. (2008). Description of volatile compounds generated by the degradation of carotenoids in paprika, tomato and marigold oleoresins. Food Chemistry, 106, 1145–1153. doi:10.1016/j.foodchem.2007.07.045.CrossRefGoogle Scholar
  27. Rurangwa, E. (2013). Land tenure reform, The case study of Rwanda. Land Divided: Land and South African Society in 2013, in comparative perspective. Cape Town, South Africa: University of Cape Town.Google Scholar
  28. Salcedo, A., & Siritunga, D. (2011). Insights into the physiological, biochemical and molecular basis of postharvest deterioration in cassava (Manihot esculenta) roots. American Journal of Experimental Agriculture, 1, 414–431.CrossRefGoogle Scholar
  29. Sánchez, T., Chávez, A. L., Ceballos, H., Rodriguez-Amaya, D. B., Nestel, P., & Ishitani, M. (2006). Reduction or delay of post-harvest physiological deterioration in cassava roots with higher carotenoid content. Journal of the Science of Food and Agriculture, 86, 634–639. doi:10.1002/jsfa.2371.CrossRefGoogle Scholar
  30. Sánchez, T., Dufour, D., Moreno, J., Pizarro, M., Aragón, I., Domínguez, M., et al. (2013). Changes in extended shelf life of cassava roots during storage in ambient conditions. Postharvest Biology and Technology, 86, 520–528.CrossRefGoogle Scholar
  31. Sayre, R. T. (2011). Biofortification of cassava for Africa: the BioCassava Plus program. In P. Charles (Ed.), Access Not Excess: The search for better nutrition (pp. 113–120). Smith-Gordon.Google Scholar
  32. Smith, M. E., Castillo, F. G., & Gómez, F. (2001). Participatory plant breeding with maize in Mexico and Honduras. Euphytica, 122, 551–563.CrossRefGoogle Scholar
  33. Stephen, B. and N. Lecumberri. (2011). Livelihoods zoning “plus” activity in Rwanda. The Famine Early Warning Systems Network (FEWS NET).Google Scholar
  34. Tumuhimbise, R. (2013). Breeding and evaluation of cassava for high storage root yield and early bulking in Uganda. Pietermaritzburg, SA: University of KwaZulu-Natal.Google Scholar
  35. Tumuhimbise, R., Melis, R., Shanahan, P., & Kawuki, R. (2014). Genotype × environment interaction effects on early fresh storage root yield and related traits in cassava. The Crop Journal, 2, 329–337. doi:10.1016/j.cj.2014.04.008.CrossRefGoogle Scholar
  36. Uarrota, V. G., Moresco, R., Coelho, B., Nunes, E. D. C., Peruch, L. a. M., Neubert, E. D. O., et al. (2014). Metabolomics combined with chemometric tools (PCA, HCA, PLS-DA and SVM) for screening cassava (Manihot esculenta Crantz) roots during postharvest physiological deterioration. Food Chemistry, 161, 67–78.CrossRefPubMedGoogle Scholar
  37. Ubalua, A. (2007). Cassava wastes: treatment options and value addition alternatives. African Journal of Biotechnology, 6, 2065–2073.Google Scholar
  38. Wenham, J. (1995). Post-harvest deterioration of cassava: A biotechnology perspectiveFAO.Google Scholar
  39. Were, V. W., Melis, R., Shanahan, P., & Odongo, O. M. (2014). participatory evaluation methodsof cassava varieties preferred in the mid-altiltude tropical climate of Western Kenya. African Journal of Agricultural Research, 9, 1326–1333. doi:10.5897/AJAR2013.7334.Google Scholar
  40. Were, W., Shanahan, P., Melis, R., & Omari, O. (2012). Gene action controlling farmer preferred traits in cassava varieties adapted to mid-altitude tropical climatic conditions of western Kenya. Field Crops Research, 133, 113–118.CrossRefGoogle Scholar
  41. Were, W. V. (2011). Cassava breeding through complementary conventional and participatory approaches in western Kenya. South Africa: Thesis (PhD), University of KwaZulu-Natal, Pietermaritzburg.Google Scholar
  42. Xu, J., Duan, X., Yang, J., Beeching, J. R., & Zhang, P. (2013). Enhanced reactive oxygen species scavenging by overproduction of superoxide dismutase and catalase delays postharvest physiological deterioration of Cassava storage roots. Plant Physiology, 161, 1517–1528.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Zepka, L. Q., D. S. Garruti, K. L. Sampaio, A. Z. Mercadante and M. a. A. Da Silva. (2014). Aroma compounds derived from the thermal degradation of carotenoids in a cashew apple juice model. Food Research International 56, 108–114.Google Scholar
  44. Zidenga, T., Leyva-Guerrero, E., Moon, H., Siritunga, D., & Sayre, R. (2012). Extending cassava root shelf life via reduction of reactive oxygen species production. Plant Physiology, 159, 1396–1407. doi:10.1104/pp.112.200345.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht and International Society for Plant Pathology 2016

Authors and Affiliations

  1. 1.University of KwaZulu-Natal, African Centre for crop improvement (ACCI)ScottvilleSouth Africa
  2. 2.Rwanda Agriculture Board (RAB)KigaliRwanda

Personalised recommendations