Skip to main content

Input constraints to food production: the impact of soil degradation

Abstract

Global demand for food is increasing in terms of the quantity, quality and reliability of supplies. Currently, over 90 % of our food is grown on (or in) a virtually irreplaceable, non-renewable natural resource – the soil. This paper examines the latest research on selected soil degradation processes (soil erosion by water, compaction, loss of organic matter, loss of soil biodiversity and soil contamination) and specifically how they impact on food production. Every year, an estimated 12 million hectares of agricultural land are lost to soil degradation, adding to the billions of hectares that are already degraded. It is estimated that soil degradation leads to a potential loss of 20 million tonnes of grain per annum, but this is likely to be an underestimate, because the evidence base is limited in identifying direct impacts of soil degradation on food production. Some soil management practices have been used to mask the effects of soil degradation on food production (e.g., additions of chemical fertilisers), but comprehensive soil conservation practices are required to respond to the multiple problems of soil degradation if the world is to be able to feed more than 9 billion people by 2050.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Abawi, G. S., & Widmer, T. L. (2000). Impact of soil health management practices on soilborne pathogens, nematodes and root diseases of vegetable crops. Applied Soil Ecology, 15, 37–47.

    Google Scholar 

  • Agraawal, R. P. (1991). Water and nutrient management in sandy soils by compaction. Soil and Tillage Research, 19(2–3), 121–130.

    Google Scholar 

  • Ahmad, N., Hassan, F. U., & Belford, R. K. (2009). Effect of soil compaction in the subhumid cropping environment in Pakistan on uptake of NPK and grain yield in wheat (Triticum aestivum). I. Compaction. Field Crops Research, 110, 54–60.

    Google Scholar 

  • Ahmad, M., Rajapaksha, A., Lim, J., Zhang, M., Bolan, N., Mohan, D., et al. (2014). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 99, 19–23.

    CAS  PubMed  Google Scholar 

  • Akker, J. J. H., & Canarache, A. (2001). Two European concerted actions on subsoil compaction. Landnutzug und Landentwicklung, 42, 15–22.

    Google Scholar 

  • Altieri, M. A. (1999). The ecological role of biodiversity in agroecosystems. Agriculture, Ecosystems and Environment, 74, 19–31.

    Google Scholar 

  • Antille, D., Sakrabani, R. & Godwin, R.J. (2013). Field-scale evaluation of biosolids-derived organomineral fertilisers applied to ryegrass (Lolium perenne L) in England. Applied and Environmental Soil Science. Vol 2013. Article ID 960629. 9 pages.

  • Arvidsson, J., & Håkansson, I. (2014). Response of different crops to soil compaction – Short-term effects in Swedish field experiments. Soil & Tillage Research, 138, 56–63.

    Google Scholar 

  • Aveyard, J.M. (1983). Soil erosion and its effect on productivity and selected soil properties on a texture contrast soil in a Mediterranean environment, Malama Aina Conference, Honolulu, January 16–22, 1983.

  • Aveyard, J. M. (1988). Land degradation: changing attitudes-why? Journal Soil Conservation Service NSW., 44, 46–51.

    Google Scholar 

  • Bai, Z. G., Dent, D. L., Olsson, L., & Schaepman, M. E. (2008). Global assessment of land degradation and improvement identification by remote sensing. Wageningen: International Soil Reference and Information Centre (ISRIC).

    Google Scholar 

  • Bakker, D. M., & Davis, R. J. (1995). Soil deformation observation in a vertisol under field traffic. Australian Journal of Soil Research, 33, 817–832.

    Google Scholar 

  • Bakker, M. M., Govers, G., & Rounsevell, M. D. A. (2004). The crop productivity-erosion relationship: an analysis based on experimental work. Catena, 57, 55–76.

    Google Scholar 

  • Ball, B. C., Campbell, D. J., & Hunter, E. A. (2000). Soil compactibility in relation to physicl and organic properties at 156 sites in UK. Soil Tillage Research, 57, 83–91.

    Google Scholar 

  • Barr, D. A. (1957). The effect of sheet erosion on wheat yield. Journal Soil Conservation Service NSW, 13, 27–32.

    Google Scholar 

  • Barton, A. P., Fullen, M. A., Mitchell, D. J., Hocking, T. J., Liu, L. G., Bo, Z. W., et al. (2004). Effects of soil conservation measures on erosion rates and crop productivity on subtropical Ultisols in Yunnan Province, China. Agriculture, Ecosystems & Environment, 104(2), 343–357.

    Google Scholar 

  • Batey, T. (2009). Soil compaction and soil management – a review. Soil Use and Management, 25, 335–345.

    Google Scholar 

  • Battiston, L.A., McBride, R.A., Miller, M.H., & Brklacich, M.J. (1985). Soil erosion productivity research in southern Ontario. Am. Soc. Agric. Eng. Special Publ. 8–85, St. Joseph, MI, 28–38.

  • Baxter, C., Rowan, J. S., McKenzie, B. M., & Neilson, R. (2013). Understanding soil erosion impacts in temperate agroecosystems: bridging the gap between geomorphology and soil ecology using nematodes as a model organism. Biogeosciences, 10(11), 7133–7145.

    Google Scholar 

  • Beddington. J., Asaduzzaman, M., Clark, M., Fernández, A., Guillou, M., Jahn, M., et al. (2012). Achieving food security in the face of climate change: Final report from the Commission on Sustainable Agriculture and Climate Change. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). Copenhagen, Denmark. Available online at: www.ccafs.cgiar.org/commission.

  • Bellamy, P. H., Loveland, P. J., Bradley, R. I., Lark, R. M., & Kirk, G. J. D. (2005). Carbon losses from all soils across England and Wales 1978–2003. Nature, 437, 245–248.

    CAS  PubMed  Google Scholar 

  • Bengough, A. G., McKenzie, B. M., Hallett, P. D., & Valentine, T. A. (2011). Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits. Journal of Experimental Botany, 62, 59–68.

    CAS  PubMed  Google Scholar 

  • Bilotta, G. S., Brazier, R. E., & Haygarth, P. M. (2007). The impacts of grazing animals on the quality of soils, vegetation, and surface waters in intensively managed grasslands. Advances in Agronomy, 94, 237–280.

    CAS  Google Scholar 

  • Bofu, Z., Jing, D., Junsong, J., Feng,  L. & Yan, Y. (2008). Assessment of ecosystem services of Lugu Lake watershed. International Journal of Sustainable Development & World Ecology, 15(1).

  • Botta, G. G., Jorajuria, C. D., & Draghi, T. L. (1999). Soil compaction during secondary tillage traffic. Agro-Ciencia, 15, 139–144.

    Google Scholar 

  • Bringezu, S., O’Brien, M., Pengue, W., Swilling, M. & Kauppi, L. (2010). Assessing global land use and soil management for sustainable resource policies. Scoping paper for the International Panel for Sustainable Resource Management, UNEP. Chaudary & Das, 1990.

  • Chaudary, H. P., & Das, S. K. (1990). Nutrient status in relation to intensity of erosion in ravines of Yamuna. Indian Social Soil Sciences, 38, 126–129.

    Google Scholar 

  • Cluzeau, D., Binet, F., Vertes, F., Simon, J., Riviere, J., & Trehen, P. (1992). Effects of intensive cattle trampling on soil–plant–earthworms system in two grassland types. Soil Biology and Biochemistry, 24, 1661–1665.

    Google Scholar 

  • Cole, L., Buckland, S. M., & Bardgett, R. D. (2005). Relating microarthropod community structure and diversity to soil fertility manipulations in temperate grassland. Soil Biology and Biochemistry, 37, 1707–1717.

    CAS  Google Scholar 

  • Cortet, J., Gillon, D., Joffre, R., Ourcival, J.-M., & Poinsot-Balaguer, N. (2002a). Effects of pesticides on organic matter recycling and microarthropods in a maize field: use and discussion of the litterbag methodology Eur. Journal of Soil Biology, 38, 261–265.

    CAS  Google Scholar 

  • Cortet, J., Ronce, D., Poinsot-Balaguer, N., Beaufreton, C., Chabert, A., Viaux, P., et al. (2002b). Impacts of different agricultural practices on the biodiversity of microarthropod communities in arable crop systems. European Journal of Soil Biology, 38, 239–244.

    Google Scholar 

  • Courtney, F. M., & Trudgill, S. T. (1976). The soil: An introduction to soil study in Britain (p. 120). London: Edward Arnold.

    Google Scholar 

  • Daily, G. C. (1997). Nature’s services: Societal dependence on natural ecosystems. Washington: Island Press.

    Google Scholar 

  • Dass, A., Sudhishri, S., Lenka, N. K., & Patnaik, U. S. (2011). Runoff capture through vegetative barriers and planting methodologies to reduce erosion, and improve soil moisture, fertility and crop productivity in southern Orissa, India. Nutrient Cycling in Agroecosystems, 89(1), 45–57.

    Google Scholar 

  • Deeks, L. K., Chaney, K., Murray, C., Sakrabani, R., Gedara, S., Le, M. S., et al. (2013). A new sludge-derived organo-mineral fertilizer gives similar crop yields as conventional fertilizers. Agronomy for Sustainable Development, 33, 539–549.

    Google Scholar 

  • Defossez, P., & Richard, G. (2002). Models of soil compaction due to traffic and their evaluation. Soil Tillage Research, 67, 41–64.

    Google Scholar 

  • Defra. (2009). Safeguarding our Soils: A Strategy for England. Department for Environment, Food and Rural Affairs, London.

  • Diaz, F. J., Tejedor, M., Jimenez, C., & Dahlgren, R. A. (2011). Soil fertility dynamics in runoff-capture agriculture, Canary Islands, Spain. Agriculture, Ecosystems & Environment, 144(1), 253–261.

    Google Scholar 

  • Doran, J. W., & Parkin, T. B. (1994). Defining and assessing soil quality. In J. W. Doran, D. C. Coleman, D. F. Bezdicek, & B. A. Stewart (Eds.), Proceedings of a symposium on defining soil quality for a sustainable environment (Minneapolis, 1992) (pp. 3–21). Wisconsin: Soil Science Society of America/American Society of Agronomy.

    Google Scholar 

  • Dregne, H. E. (1992). Erosion and soil productivity in Asia. Journal of Soil and Water Conservation, 47, 8–13.

    Google Scholar 

  • Dungait, J. A. J., Ghee, C., Rowan, J. S., McKenzie, B. M., Hawes, C., Dixon, E. R., et al. (2013). Microbial responses to the erosional redistribution of soil organic carbon in arable fields. Soil Biology and Biochemistry, 60, 195–201.

    CAS  Google Scholar 

  • Edwards, C. A., Grove, T. L., Harwood, R. R., & Pierce Colfer, C. J. (1993). The role of agroecology and integrated farming systems in agricultural sustainability. Agriculture, Ecosystems and Environment, 46, 99–121.

    Google Scholar 

  • Eilers, K. G., Debenport, S., Anderson, S., & Fierer, N. (2012). Digging deeper to find unique microbial communities: the strong effect of depth on the structure of bacterial and archaeal communities in soil. Soil Biology & Biochemistry, 50, 58–65.

    CAS  Google Scholar 

  • European Commission (2006). Thematic strategy for the protection of soil. COM (2006) 231 final. Commission of the European Communities, Brussels.

  • Faeth, P., & Crosson, P. (1994). Building the case for sustainable agriculture. Environment, 36, 16–20.

    Google Scholar 

  • FAO (1996). Rome Declaration on World Food Security and World Food Summit Plan of Action. World Food Summit 13–17 November 1996. Rome.

  • FAOSTAT (2011). http://faostat.fao.org/site/368/DesktopDefault.aspx?PageID=368#ancor. Accessed 10/10/2014.

  • Fierer, N., Schimel, J. P., & Holden, P. A. (2003). Variations in microbial community composition through two soil depth profiles. Soil Biology & Biochemistry, 35(1), 167–176.

    CAS  Google Scholar 

  • Foresight (2011). The Future of Food and Farming. Final Project Report. The Government Office for Science, London.

  • Frampton, G. K., Van Den Brink, P. J., & Wratten, S. D. (2001). Diel activity patterns in an arable collembolan community. Applied Soil Ecology, 17, 63–80.

    Google Scholar 

  • Frye, W. W., Ebelhar, S. A., Murdock, L. W., & Bevins, R. L. (1982). Soil erosion effects on properties and productivity of two Kentucky soils. Soil Science Society of America Journal, 46, 1051.

    Google Scholar 

  • Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., et al. (2010). Food security: the challenge of feeding 9 billion people. Science, 327, 812–818.

    CAS  PubMed  Google Scholar 

  • Gorlach, B., Landgrebe-Trinkunaite, R., Interweis, E., Bouzit, M, Darmendrail, D. & Rinaudo, J.D. (2004). Assessing the Economic Impacts of Soil Degradation. Final Report to European Commission. DG Environment. ENV.B.1/ETU/2003/0024. Ecologic, Berlin.

  • Graves, A. R., & Morris, J. (2013). Restoration of Fenland Peatland under Climate Change. Report to the Adaptation Sub-Committee of the Committee on Climate Change. Cranfield University, Bedford, 73 pp

  • Graves, A., Morris, J., Deeks, L.K., Rickson, R.J., Kibblewhite, M.G., Harris, J.A, & Farewell, T.S. (2010). The Total Costs of Soils Degradation in England and Wales. Final Report submitted to Defra 156 pp.

  • Gregory, A. S., Watts, C. W., Whalley, W. R., Kuan, H. L., Griffiths, B. S., Hallett, P. D., et al. (2007). Physical resilience of soil to field compaction and the interactions with plant growth and microbial community structure. European Journal of Soil Science, 58(6), 1221–1232.

    Google Scholar 

  • Hamza, M. A., & Anderson, W. K. (2005). Soil compaction in cropping systems. A review of the nature, causes and possible solutions. Soil & Tillage Research, 82, 121–145.

    Google Scholar 

  • Heisler, C., & Kaiser, E. A. (1995). Influence of agricultural traffic and crop management on Collembola and microbial biomass in arable soil. Biology and Fertility of Soils, 19, 159–165.

    Google Scholar 

  • Hofman, G. & Cleemput, O. Van (2004). Soil and Plant Nitrogen. Paris, France.

  • Huguenin, M. T., Leggett, C. G. & Paterson, R. W. (2006). Economic valuation of soil fauna. European Journal of Soil Biology, 42(1), 16–22.

  • Jacob, P., Fesenko, S., Bogdevitch, I., Kashparov, V., Sanzharova, N., Grebenshikova, N., et al. (2009). Rural areas affected by the Chernobyl accident: radiation exposure and remediation strategies. Science of the Total Environment, 408(1), 14–25.

    CAS  PubMed  Google Scholar 

  • Jie, D. (2010) Chinese Soil Experts Warn Of Massive Threat to Food Security. SciDevNet, 5 August 2010. Available online: http://www.scidev.net/global/earth-science/news/chinese-soil- experts-warn-of-massive-threat-to-food-security.html.

  • Karlen, D. L., Mausbach, M. J., Doran, J. W., Cline, R. G., Harris, R. F., & Schuman, G. E. (1997). Soil quality: a concept, definition, and framework for evaluation. Soil Science Society of America Journal, 61, 4–10.

    CAS  Google Scholar 

  • Kendall, H. W., & Pimentel, D. (1994). Constraints on the expansion of the global food supply. Ambio, 23, 198–205.

    Google Scholar 

  • Knight, S., Knightley, S., Bingham, I., Hoad, S., Lang, B., Philpott, H., et al. (2012). Desk study to evaluate contributory causes of the current ‘yield plateau’ in wheat and oilseed rape. Project Report No 502. Home Grown Cereals Authority.

  • Krogh, P. H., Griffiths, B., Demšar, D., Bohanec, M., Debeljak, M., et al. (2007). Responses by earthworms to reduced tillage in herbicide tolerant maize and Bt maize cropping systems. Pedobiologia, 51, 219–227.

    CAS  Google Scholar 

  • Kuncoro, P. H., Koga, K., Satta, N., & Muto, Y. (2014). A study on the effect of compaction on transport properties of soil gas and water. II. Soil pore structure indices. Soil & Tillage Research, 143, 180–187.

    Google Scholar 

  • Lagomarsino, A., Grego, S., Marhan, S., Moscatelli, M. C., & Kandeler, E. (2009). Soil management modifies micro-scale abundance and function of soil microorganisms in a Mediterranean ecosystem. European Journal of Soil Science, 60, 2–12.

    CAS  Google Scholar 

  • Lal, R. (1995). Erosion-crop productivity relationships for soils of Africa. Soil Science Society of America Journal, 59, 661–667.

    CAS  Google Scholar 

  • Lal, R. (1998). Soil erosion impact on agronomic productivity and environment quality. Critical Reviews in Plant Sciences, 17(4), 319–464.

    Google Scholar 

  • Lal, R. (2001). Soil degradation by erosion. Land Degradation and Development, 12, 519–539. doi:10.1002/ldr.472.

    Google Scholar 

  • Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science (New York, N.Y.), 304(5677), 1623–7.

    CAS  Google Scholar 

  • Lal, R. (2009). Challenges and opportunities in soil organic matter research. European Journal of Soil Science, 60(2), 158–169.

    CAS  Google Scholar 

  • Lal, R. (2010). Managing soils for a warming earth in a food-insecure and energy-starved world. Journal of Plant Nutrition and Soil Science, 173(1), 4–15.

    CAS  Google Scholar 

  • Lam, H. M., Remais, J., Fung, M. C., Xu, L., & Sun, S. M. (2013). Food supply and food safety issues in China. The Lancet, 381(9882), 2044–2053.

    Google Scholar 

  • Lambert, M. G., Trustrum, N. A., & Costall, D. A. (1984). Effect of soil slip erosion on seasonally dry Wairarapa hill pastures. New Zealand Journal of Agricultural Research, 27, 57–64.

    Google Scholar 

  • Langdale, G. W., Box, J. E., Leonard, R. A., Barnett, A. P., & Fleming, W. G. (1979). Com yield reduction on eroded southern Piedmont soils. Journal of Soil and Water Conservation, 34, 226.

    Google Scholar 

  • Larney, F. J., Izaurralde, R. C., Janzen, H. H., Olson, B. M., Solberg, E. D., Lindwall, C. W., et al. (1995). Soil erosion crop productivity relationships for six Alberta soils. Journal of Soil and Water Conservation, 50, 87–91.

    Google Scholar 

  • Latif, N., Khan, M. A., & Ali, T. (2008). Effects of soil compaction caused by tillage and seed covering techniques on soil physical properties and performance of wheat crop. Soil and Environment, 27(2), 185–192.

    Google Scholar 

  • Lipiec, J., & Simota, C. (1994). Crop respnses in Cental and Eastern Europe. In B. D. Soane, & C. van Ouwerkerk (Eds.), Soil Compaction in Crop Production (pp. 365–389). Elsevier: Amsterdam.

  • Lipiec, J., Håkansson, I., Tarkiewicz, S., & Kossowski, J. (1991). Soil physical properties and growth of spring barley related to the degree of compactness of two soils. Soil Tillage Research, 19, 307–317.

    Google Scholar 

  • Lipiec, J., Medvedev, V. V., Birkas, M., Dumitru, E., Lyndina, T. E., Rousseva, S., et al. (2003). Effect of soil compaction on root growth and crop yield in Central and Eastern Europe. International Agrophysics, 17, 61–69.

    Google Scholar 

  • Ljung, K., Maley, F., Cook, A., & Weinstein, P. (2009). Acid sulfate soils and human health-a millennium ecosystem assessment. Environment International, 35(8), 1234–1242.

    CAS  PubMed  Google Scholar 

  • Loveland, P., & Webb, J. (2003). Is there a critical level of organic matter in the agricultural soils of temperate regions: a review. Soil & Tillage Research 70, 1–18.

  • Lucas, R.E., Holtman, J.B. & Connor, L.J. (1977) Soil carbon dynamics and cropping practices. In Agriculture and Energy, W. Lockeretz, ed. Academic Press, New York, (1977), pp. 333–351.

  • Lyles, L. (1975). Possible effects of wind erosion on soil productivity. Journal of Soil and Water Conservation, 30, 279.

    Google Scholar 

  • MA (2005). Ecosystem Services and Human Wellbeing. Millennium Ecosystems Assessment Synthesis report. 155 pp

  • Maskey, R.B., Joshy, D., & Maharajan, P.L. (1992). Management of sloping lands for sustainable agriculture in Nepal. In: Sajjapongse, A., Ed. 1992. The management of sloping lands for sustainable agriculture in Asia, Phase 1, 1988–1991, IBSRAM, Bangkok, Thailand, 117–157.

  • Matthews, G.P., Laudone, G.M., Gregory, A.S., Bird, N.R.A., Matthews, A.G.D. & Whalley, W.R. (2010). Measurement and simulation of the effect of compaction on the pore structure and saturated hydraulic conductivity of grassland and arable soil. Water Resources Research, 46.

  • McAfee, M., Lindstöm, J., & Johansson, W. (1989). Effects of pre-sowing compaction on soil physical properties, soil atmosphere and growth of oats on a clay soil. Journal of Soil Science, 40, 707–717.

    Google Scholar 

  • McDaniel, T. A. & Hajek, B. F. (1985) Soil erosion on crop productivity and soil properties in Alabama. American Society of Agricultural Engineers Special Publ.8–85, St. Joseph, MI, 48–58.

  • Meyer, L. D., & Wischmeier, W. H. (1969). Mathematical simulation of the process of soil erosion by water. Transactions of the American Society of Agricultural Engineers, 12, 754–762.

    Google Scholar 

  • Miller, N., Quinton, J. N., Barberis, E., & Presta, M. (2009). Variability in the mobilization of sediment and phosphorus across 13 European soils. Journal of Environmental Quality, 38(2), 742–750.

    CAS  PubMed  Google Scholar 

  • Mokma, D. L., & Sietz, M. A. (1992). Effects of soil erosion on corn yields on Marlette soils in south-central Michigan. Journal of Soil and Water Conservation, 47, 325–327.

    Google Scholar 

  • Morris J., Graves, A., Angus, A., Hess, T., Lawson, C., Camino, M., Truckell, I. & Holman, I. (2010). Restoration of lowland peatland in England and impacts on food production and security. Report to Natural England. Cranfield University: Bedford.

  • Myers, N. (1993). Gaia: An atlas of planet management. Garden City: Anchor/DoubleDay.

    Google Scholar 

  • NEA. (2011). UK national ecosystem assessment: Synthesis of the Key findings. Cambridge: UNEP-WCMC.

    Google Scholar 

  • Ngwira, A. R., Thierfelder, C., & Lambert, D. M. (2013). Conservation agriculture systems for Malawian smallholder farmers: long-term effects on crop productivity, profitability and soil quality. Renewable Agriculture and Food Systems, 28(4), 350–363.

    Google Scholar 

  • Olson, K. R., & Nizeyimana, E. (1988). Effect of soil erosion on crop yields of seven Illinois soils. Journal of Production Agriculture, 1, 13–19.

    Google Scholar 

  • Owens, P.N., Rickson, R.J., Clarke, M.A., Dresser, M., Deeks, L.K., Jones, R.J.A., et al. (2006). Review of the existing knowledge base on magnitude, extent, causes and implications of soil loss due to wind, tillage and co-extraction with root vegetables in England and Wales, and recommendations for research priorities. NSRI Report to DEFRA, Project SP08007, Cranfield University, UK.

  • Pimental, D., & Burgess, M. (2013). Soil erosion threatens food production. Agriculture, 3, 443–463. doi:10.3390/agriculture3030443.

    Google Scholar 

  • Pimentel, D. (2006). Soil erosion: a food and environmental threat. Environment, Development and Sustainability, 8, 119–137.

    Google Scholar 

  • Pimentel, D., Harvey, C., Resosudarmo, P., Sinclair, K., Kurz, D., McNair, M., et al. (1995). Environmental and economic costs of soil erosion and conservation benefits. Science, New Series, 267(5201), 1117–1123.

    CAS  Google Scholar 

  • Ponge, J.-F. (2013). The impact of agricultural practices on soil biota: a regional study. Soil Biology and Biochemistry, 67, 271–284.

    CAS  Google Scholar 

  • Powlson, D.S., Gregory, P.J., Whalley, W.R., Quinton, J.N., Hopkins, D.W. Whitmore, A.P., et al. (2011). Soil management in relation to sustainable agriculture and ecosystem services. Food Policy Volume: 36 Supplement: 1 Pages: S72-S87 DOI: 10.1016/j.foodpol.2010.11.025

  • Quinton, J. N., Catt, J. A., & Hess, T. M. (2001). The selective removal of phosphorus from soil: is event size important? Journal of Environmental Quality, 30(2), 538–545.

    CAS  PubMed  Google Scholar 

  • Rebecchi, L., Sabatini, M. A., Cappi, C., Grazioso, P., Vicari, A., Dinelli, G., et al. (2000). Effects of a sulfonylurea herbicide on soil microarthropods. Biology and Fertility of Soils, 30, 312–317.

    CAS  Google Scholar 

  • Ritz, K., & Young, I. (2011). The architecture and biology of soils: Life in inner space. Croydon: CPI Group (UK) Ltd.

    Google Scholar 

  • Ritz, K., McHugh, M. & Harris, J. (2004). Biological diversity and function in soils: contemporary perspectives and implications in relation to the formulation of effective indicators. In Agricultural Soil Erosion and Soil Biodiversity: Developing Indicators for Policy Analyses, Paris, OECD.

  • Romkens, M., Roth, C., & Nelson, D. (1977). Erodibility of selected clay subsoils in relation to physical and chemical properties. Soil Science Society of America Journal, 41(5), 954–960.

    CAS  Google Scholar 

  • Rosas-Castor, J., Guzman-Mar, J., Hernandez-Ramirez, A., Garza-Gonzalez, M., & Hinojosa-Reyes, L. (2014). Arsenic accumulation in maize crop (Zea mays): a review. Science of the Total Environment, 488–489(1), 176–187.

    PubMed  Google Scholar 

  • Schertz, D. L., Moldenhauer, W. C., Livingston, S. J., Weesies, F. A., & Hintz, E. A. (1989). Effect of past soil erosion on crop productivity in Indiana. Journal of Soil and Water Conservation, 44, 604.

    Google Scholar 

  • Schumacher, T. E., Lindstrom, M. J., Mokma, D. L., & Nelson, W. W. (1994). Corn yield: erosion relationships of representative loess and till soils in the north central United States. Journal of Soil and Water Conservation, 49, 77–82.

    Google Scholar 

  • Singh, B. R., Gupta, S. K., Azaizeh, H., Shilev, S., Sudre, D., Song, W. Y., et al. (2011). Safety of food crops on land contaminated with trace elements. Journal of the Science of Food and Agriculture, 91(8), 1349–1366.

    CAS  PubMed  Google Scholar 

  • Soane, B. D. (1990). The role of organic matter in soil compactibility: a review of some practical aspects. Soil Tillage Research, 16, 179–201.

    Google Scholar 

  • Stockdale, E. A., Fortune, S., & Cuttle, S. P. (2002). Soil fertility in organic farming systems – fundamentally different? Soil Use and Management, 18(3), 301–308.

    Google Scholar 

  • Thompson, A. L., Gantzer, C. J., & Anderson, S. H. (1991). Topsoil depth, fertility, water management, and weather influences on yield. Soil Science Society of America Journal, 55, 1085–1091.

    Google Scholar 

  • Tong, J., Guo, H., & Wei, C. (2014). Arsenic contamination of the soil-wheat system irrigated with high arsenic groundwater in the Hetao Basin, Inner Mongolia, China. Science of the Total Environment, 496, 479–487.

    CAS  PubMed  Google Scholar 

  • Trewavas, A. (2004). A critical assessment of organic farming and food assertions with particular respect to the UK and potential environmental benefits of no-till agriculture. Crop Protection, 23, 757–781.

    Google Scholar 

  • Troeh, F. R., & Thompson, L. M. (1993). Soils and soil fertility (5th ed.). New York: Oxford Univ. Press.

    Google Scholar 

  • Troeh, F. R., Hobbs, J. A., & Donahue, R. L. (1991). Soil and water conservation. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Troeh, F. R., Hobbs, A. H., & Donahue, R. L. (2004). Soil and water conservation: For productivity and environmental protection. Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Ulyett, J. (2014). Impact of biochar manipulations on water and nitrogen dynamics of sandy loam soils. PhD thesis. Cranfield University.

  • United Nations. (2012). The strategy of the united nations on mine action 2013–2018. United nations inter-agency coordination group on mine action. Geneva: United Nations.

    Google Scholar 

  • United Nations (2013). Guidelines for developing national strategies to use soil contamination monitoring as an environmental policy tool. Economic Commission for Europe. Committee on Environmental Policy. Working Group on Environmental Monitoring and Assessment. Fourteenth Session. Geneva, 7 and 8 November 2013, UNECE, United Nations, Geneva.

  • United Nations Convention to Combat Desertification (2011). Desertification: a visual synthesis. Bonn: UNCCD Secretariat. www.unccd.int/knowledge/docs/Desertification-EN.pdf

  • Uraguchi, S., & Fujiwara, T. (2013). Rice breaks ground for cadmium-free cereals. Current Opinion in Plant Biology, 16(3), 328–334.

    CAS  PubMed  Google Scholar 

  • Van der Putten, W. H., de Ruiter, P. C., Bezemer, T. M., Harvey, J. A., Wassen, M., & Wolters, V. (2004). Trophic interactions in a changing world. Basic and Applied Ecology, 5, 487–494.

    Google Scholar 

  • Van der Wal, A., Geerts, R. H. E. M., Korevaar, H., Schouten, A. J., & Jagers op Akkerhuis, G. A. J. M. (2009). Dissimilar response of plant and soil biota communities to long–term nutrient addition in grasslands. Biology and Fertility of Soils, 45, 663–667.

    Google Scholar 

  • Verheijen, F. G. A., Jones, R. J. A., Rickson, R. J., & Smith, C. J. (2009). Tolerable versus actual soil erosion rates in Europe. Earth Science Reviews, 94(1–4), 23–38.

    Google Scholar 

  • Voorhees, W. B. (1987). Assessment of soil susceptibility to compaction using soil and climatic data bases. Soil and Tillage Research, 10, 29–38.

    Google Scholar 

  • Weesies, G. A., Livingston, S. J., Hosteter, W. D., & Schertz, D. L. (1994). Effect of soil erosion on crop yield in Indiana: results of a 10 year study. Journal of Soil and Water Conservation, 49, 597–600.

    Google Scholar 

  • Wen, F.H. & Easter, K.W. (1987). Soil erosion and the loss in productivity: An example of the Terril soil series in Minnesota. Station Bulleting 577–1987 (Item No. AD-SB-3200) Agricultural Experiment Station, University of Minnesota, 19 p.

  • White, A.W., Jr., Bruce, R.R., Thomas, A.W., Langdale, G.W., & Perkins, H.F. (1985). Characterizing productivity of eroded soils in the Southern Piedmont. Am. Soc. Agric. Eng. Special Publ. 8–85, St. Joseph, MI, 83–95.

  • Wood, S., Sebastian, K., & Scherr, S. J. (2000). Pilot analysis of global ecosystems: Agroecosystems. Washington, DC: A joint study by the International Food Policy Research Institute and the World Resources Institute.

    Google Scholar 

  • Wood, G.A., Kibblewhite, M.G., Hannan, J.A., Harris, J.A. & Leeds-Harrison, P.B. (2005). Soils in the Built Environment. Report to Department of the Environment, Food and Rural Affairs, National Soil Resources Institute, Cranfield University, Bedford.

  • Wu, K-Y., Jiang, Z-C., Deng, X.H., & Ye, Y. (2008). Ecosystem service value of restored secondary forest in the Karstic-rocky hills—A case study of Nongla National Medicine Nature Reserve, Guangxi Zhuang Autonomous Region. Chinese Journal of Eco-Agriculture, 4.

  • Young, A. (1989). Agroforestry for soil conservation. Wallingford: CAB.

    Google Scholar 

  • Young, I.M. & Crawford, J.W. (eds.) (2004). Interactions and self-organisation in the soil-microbe complex. Science, 304: 1634–1637.

  • Zhang, H. (1994). Organic matter incorporation affects mechanical properties of soil aggregates. Soil Tillage Research, 31, 263–275.

    Google Scholar 

  • Zhao, Q., Wang, Y., Cao, Y., Chen, A., Ren, M., Ge, Y., et al. (2014). Potential health risks of heavy metals in cultivated topsoil and grain, including correlations with human primary liver, lung and gastric cancer, in Anhui province, Eastern China. Science of the Total Environment, 470–471, 340–347.

    PubMed  Google Scholar 

Download references

Acknowledgements

This paper was part of a workshop sponsored by the OECD Co-operative Research Programme onBiological Resource Management for Sustainable Agricultural Systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Rickson.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rickson, R.J., Deeks, L.K., Graves, A. et al. Input constraints to food production: the impact of soil degradation. Food Sec. 7, 351–364 (2015). https://doi.org/10.1007/s12571-015-0437-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12571-015-0437-x

Keywords

  • Soil degradation processes
  • Food production