Skip to main content

Advertisement

Log in

Water productivity and food security: considering more carefully the farm-level perspective

Food Security Aims and scope Submit manuscript

Abstract

With the increasing demands on water resources in many areas, many authors are calling for increases in water productivity in agriculture to ensure sufficient food production in the future. While compelling at first glance, the notion of increasing water productivity is not supported by an underlying economic rationale and is not necessarily consistent with the goals of individual farmers regarding net revenue or subsistence production. Water productivity, as defined in the literature, is a ratio describing the average amount of output or value associated with the amount of water applied or transpired in crop production. As such, the ratio is not a sufficient indicator of economic efficiency and cannot be relied on to determine desirable adjustments in regional water allocations or in farm-level irrigation strategies. I describe the shortcomings of water productivity as an indicator of optimal water use, with a focus on farm-level decisions regarding crop production and irrigation. I note also the importance of considering more carefully the full set of inputs that contribute to crop production, and the risk and uncertainty that influence farm-level decisions. Water productivity does not address these inherent characteristics of agricultural production, which must be considered when evaluating policies and investments to enhance rural livelihoods and ensure food security.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  • Alauddin, M., & Sharma, B. R. (2013). Inter-district rice water productivity differences in Bangladesh: an empirical exploration and implications. Ecological Economics, 93, 210–218.

    Article  Google Scholar 

  • Alauddin, M., Amarasinghe, U. A., & Sharma, B. R. (2014). Four decades of rice water productivity in Bangladesh: a spatio-temporal analysis of district level panel data. Economic Analysis and Policy, 44(1), 51–64.

    Article  Google Scholar 

  • Ambast, S. K., Keshari, A. K., & Gosain, A. K. (2002). Satellite remote sensing to support management of irrigation systems: concepts and approaches. Irrigation and Drainage, 51(1), 25–39.

    Article  Google Scholar 

  • Andersson, J. C. M., Zehnder, A. J. B., Jewitt, G. P. W., & Yang, H. (2009). Water availability, demand and reliability of in situ water harvesting in smallholder rain-fed agriculture in the Thukela River Basin, South Africa. Hydrology and Earth System Sciences, 13, 2329–2347.

    Article  Google Scholar 

  • Badr, M. A., El-Tohamy, W. A., & Zaghloul, A. M. (2012). Yield and water use efficiency of potato grown under different irrigation and nitrogen levels in an arid region. Agricultural Water Management, 110, 9–15.

    Article  Google Scholar 

  • Barker, R., Dawe, D., & Arlene Inocencio, A. (2003). Economics of water productivity in managing water for agriculture. In J. W. Kijne, R. Barker, & D. Molden (Eds.), Water productivity in agriculture: Limits and opportunities for improvement. Wallingford: CAB International.

    Google Scholar 

  • Bastiaanssen, W. G. M., Thiruvengadachari, S., Sakthivadivel, R., & Molden, D. J. (1999). Satellite remote sensing for estimating productivities of land and water. International Journal of Water Resources Development, 15(1–2), 181–196.

    Article  Google Scholar 

  • Biazin, B., Sterk, G., Temesgen, M., Abdulkedir, A., Stroosnijder, L. (2012). Rainwater harvesting and management in rainfed agricultural systems in sub-Saharan Africa: A review. Physics and Chemistry of the Earth 47–48, 139–151.

  • Bogale, A. (2012). Vulnerability of smallholder rural households to food insecurity in eastern Ethiopia. Food Security, 4(4), 581–591.

    Article  Google Scholar 

  • Bouman, B. A. M., & Tuong, T. P. (2001). Field water management to save water and increase its productivity in irrigated lowland rice. Agricultural Water Management, 49(1), 11–30.

    Article  Google Scholar 

  • Brar, S. K., Mahal, S. S., Brar, A. S., Vashist, K. K., Sharma, N., & Buttar, G. S. (2012). Transplanting time and seedling age affect water productivity, rice yield and quality in north-west India. Agricultural Water Management, 115, 217–222.

    Article  Google Scholar 

  • Brauman, K. A., Siebert, S., & Foley, J. A. (2013). Improvements in crop water productivity increase water sustainability and food security: a global analysis. Environmental Research Letters, 8(2), 24–30.

    Article  Google Scholar 

  • Cabangon, R. J., Tuong, T. P., & Abdullah, N. B. (2002). Comparing water input and water productivity of transplanted and direct-seeded rice production systems. Agricultural Water Management, 57(1), 11–31.

    Article  Google Scholar 

  • Cai, X., & Rosegrant, M. W. (2003). World water productivity: Current situation and future options. In J. W. Kijne, R. Barker, & D. Molden (Eds.), Water productivity in agriculture: Limits and opportunities for improvement. Wallingford: CAB International.

    Google Scholar 

  • Cai, X., Molden, D., Mainuddin, M., Sharma, B., Ahmad, M.-U.-D., & Karimi, P. (2011). Producing more food with less water in a changing world: assessment of water productivity in 10 major river basins. Water International, 36(1), 42–62.

    Article  Google Scholar 

  • Cai, X., Thenkabail, P. S., Biradar, C. M., Platonov, A., Gumma, M., Dheeravath, V., Cohen, Y., Goldlshleger, N., Ben-Dor, E., Alchanatis, V., Vithanage, J., & Markandu, A. (2012). Water productivity mapping using remote sensing data of various resolutions to support “more crop per drop.”. Journal of Applied Remote Sensing, 3, 1–23.

    Google Scholar 

  • Chander, G., Wani, S. P., Sahrawat, K. L., & Jangawad, L. S. (2012). Balanced plant nutrition enhances rainfed crop yields and water productivity in Jharkhand and Madhya Pradesh states of India. Journal of Tropical Agriculture, 50(1–2), 24–29.

    Google Scholar 

  • Droogers, P., & Kite, G. (1999). Water productivity from integrated basin modeling. Irrigation and Drainage Systems, 13(3), 275–290.

    Article  Google Scholar 

  • Droogers, P., Kite, G., & Murray-Rust, H. (2000). Use of simulation models to evaluate irrigation performance including water productivity, risk and system analyses. Irrigation Science, 19(3), 139–145.

    Article  Google Scholar 

  • Faramarzi, M., Yang, H., Schulin, R., & Abbaspour, K. C. (2010). Modeling wheat yield and crop water productivity in Iran: implications of agricultural water management for wheat production. Agricultural Water Management, 97(11), 1861–1875.

    Article  Google Scholar 

  • Fernández-García, P., López-Bellido, L., Muñoz-Romero, V., & López-Bellido, R. J. (2013). Chickpea water use efficiency as affected by tillage in rainfed Mediterranean conditions. Agricultural Water Management, 129, 194–199.

    Article  Google Scholar 

  • Geerts, S., & Raes, D. (2009). Deficit irrigation as an on-farm strategy to maximize drop water productivity in dry areas. Agricultural Water Management, 96, 1275–1284.

    Article  Google Scholar 

  • Hamdy, A., Ragab, R., & Scarascia-Mugnozza, E. (2003). Coping with water scarcity: water saving and increasing water productivity. Irrigation and Drainage, 52(1), 3–20.

    Article  Google Scholar 

  • Ierna, A., Pandino, G., Lombardo, S., & Mauromicale, G. (2011). Tuber yield, water and fertilizer productivity in early potato as affected by a combination of irrigation and fertilization. Agricultural Water Management, 101, 35–41.

    Article  Google Scholar 

  • Ines, A. V. M., Gupta, A. D., & Loof, R. (2002). Application of GIS and crop growth models in estimating water productivity. Agricultural Water Management, 54(3), 205–225.

    Article  Google Scholar 

  • Jalota, S. K., Singh, K. B., Chahal, G. B. S., Gupta, R. K., Chakraborty, S., Sood, A., Ray, S. S., & Panigrahy, S. (2009). Integrated effect of transplanting date, cultivar and irrigation on yield, water saving and water productivity of rice (Oryza sativa L.) in Indian Punjab: field and simulation study. Agricultural Water Management, 96(7), 1096–1104.

    Article  Google Scholar 

  • Karatas, B. S., Akkuzu, E., Unal, H. B., Asik, S., & Avci, M. (2009). Using satellite remote sensing to assess irrigation performance in water user associations in the Lower Gediz Basin, Turkey. Agricultural Water Management, 96(6), 982–990.

    Article  Google Scholar 

  • Kijne, J. W. (2003). Water productivity under saline conditions. In J. W. Kijne, R. Barker, & D. Molden (Eds.), Water productivity in agriculture: Limits and opportunities for improvement. Wallingford: CAB International.

    Chapter  Google Scholar 

  • Kijne, J. W., Barker, R., & Molden, D. (2003). Water productivity in agriculture: Limits and opportunities for improvement. Wallingford: CAB International.

    Book  Google Scholar 

  • Lenton, R. (2013). Innovations to improve water productivity: reflections. Aquatic Procedia, 1, 168–171.

    Article  Google Scholar 

  • Li, X., Waddington, S. R., Dixon, J., Joshi, A. K., & de Vicente, M. C. (2011). The relative importance of drought and other water-related constraints for major food crops in South Asian farming systems. Food Security, 3(1), 19–33.

    Article  Google Scholar 

  • Liang, X., & van Dijk, M. P. (2011). Economic and financial analysis on rainwater harvesting for agricultural irrigation in the rural areas of Beijing. Resources, Conservation and Recycling, 55(11), 1100–1108.

    Article  Google Scholar 

  • Mahajan, G., Bharaj, T. S., & Timsina, J. (2009). Yield and water productivity of rice as affected by time of transplanting in Punjab, India. Agricultural Water Management, 96(3), 525–532.

    Article  Google Scholar 

  • Molden, D. (1997). Accounting for Water Use and Productivity, SWIM Paper 1 Colombo. Sri Lanka: International Irrigation Management Institute.

    Google Scholar 

  • Molden, D., & Sakthivadivel, R. (1999). Water accounting to assess use and productivity of water. International Journal of Water Resources Development, 15(1–2), 55–71.

    Article  Google Scholar 

  • Molden, D., Oweis, T., Steduto, P., Bindraban, P., Hanjra, M. A., & Kijne, J. (2010). Improving agricultural water productivity: between optimism and caution. Agricultural Water Management, 97(4), 528–535.

    Article  Google Scholar 

  • Muthuwatta, L. P., Rientjes, T. H. M., & Bos, M. G. (2013). Strategies to increase wheat production in the water scarce Karkheh River Basin, Iran. Agricultural Water Management, 124, 1–10.

    Article  Google Scholar 

  • Ngigi, S. N. (2003). What is the limit of up-scaling rainwater harvesting in a river basin? Physics and Chemistry of the Earth, 28(20–27), 943–956.

    Article  Google Scholar 

  • Oweis, T. Y., & Hachum, A. Y. (2003). Improving water productivity in the dry areas of west Asia and north Africa. In J. W. Kijne, R. Barker, & D. Molden (Eds.), Water productivity in agriculture: Limits and opportunities for improvement. Wallingford: CAB International.

    Google Scholar 

  • Qureshi, M. E., Grafton, R. Q., Kirby, M., & Hanjra, M. A. (2011). Understanding irrigation water use efficiency at different scales for better policy reform: a case study of the Murray-Darling Basin, Australia. Water Policy, 13, 1–17.

    Article  Google Scholar 

  • Redwood, M., Bouraoui, M., & Houmane, B. (2014). Rainwater and greywater harvesting for urban food security in La Soukra, Tunisia. International Journal of Water Resources Development, 30(2), 293–307.

    Article  Google Scholar 

  • Rockström, J., Barron, J., & Fox, P. (2002). Rainwater management for increased productivity among small-holder farmers in drought prone environments. Physics and Chemistry of the Earth, 27(11–22), 949–959.

    Article  Google Scholar 

  • Rockström, J., Barron, J., & Fox, P. (2003). Water productivity in rainfed agriculture: Challenges and opportunities for smallholder farmers in drought-prone tropical agroecosystems. In J. W. Kijne, R. Barker, & D. Molden (Eds.), Water productivity in agriculture: Limits and opportunities for improvement. Wallingford: CAB International.

    Google Scholar 

  • Rodrigues, G. C., & Pereira, L. S. (2009). Assessing economic impacts of deficit irrigation as related to water productivity and water costs. Biosystems Engineering, 103(4), 536–551.

    Article  Google Scholar 

  • Rufino, M. C., Thornton, P. K., Ng‘ang’a, S. K., Mutie, I., Jones, P. G., van Wijk, M. T., & Herrero, M. (2013). Transitions in agro-pastoralist systems of East Africa: Impacts on food security and poverty. Agriculture, Ecosystems and Environment, 179, 215–230.

    Article  Google Scholar 

  • Sakthivadivel, R., de Fraiture, C., Molden, D. J., Perry, C., & Kloezen, W. (1999). Indicators of land and water productivity in irrigated agriculture. International Journal of Water Resources Development, 15(1–2), 161–179.

    Article  Google Scholar 

  • Sarwar, A., & Perry, C. (2002). Increasing water productivity through deficit irrigation: evidence from the Indus plains of Pakistan. Irrigation and Drainage, 51(1), 87–92.

    Article  Google Scholar 

  • Seckler, D., Molden, D., & Sakthivadivel, R. (2003). The concept of efficiency in water resources management and policy. In J. W. Kijne, R. Barker, & D. Molden (Eds.), Water productivity in agriculture: Limits and opportunities for improvement. Wallingford: CAB International.

    Google Scholar 

  • Shi, Y.-Z., Wang, Y.-H., Cui, Y.-L., Wang, S.-W., & Zhang, Y.-S. (2014). A new rainwater harvesting and recycling system for transforming sloping land into terraced farmland. Journal of Mountain Science, 11(1), 205–214.

    Article  Google Scholar 

  • Shiferaw, B., Tesfaye, K., Kassie, M., Abate, T., Prasanna, B. M., & Menkir, A. (2014). Managing vulnerability to drought and enhancing livelihood resilience in sub-Saharan Africa: technological, institutional and policy options. Weather and Climate Extremes, 3, 67–79.

    Article  Google Scholar 

  • Silva, L.L., Duarte, I., Lourenço, E., Simões, N., Chaves, M.M. (2014). Yield and water productivity of five chickpea varieties under supplemental irrigation in contrasting years. Irrigation Science, in press.

  • Song, Z., Guo, J., Zhang, Z., Kou, T., Deng, A., Zheng, C., Ren, J., & Zhang, W. (2013). Impacts of planting systems on soil moisture, soil temperature and corn yield in rainfed area of Northeast China. European Journal of Agronomy, 50, 66–74.

    Article  Google Scholar 

  • Spiertz, H. (2012). Avenues to meet food security: the role of agronomy on solving complexity in food production and resource use. European Journal of Agronomy, 43, 1–8.

    Article  Google Scholar 

  • Steduto, P., Hsiao, T. C., Raes, D., & Fereres, E. (2009). AquaCrop - The FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agronomy Journal, 101(3), 426–437.

    Article  Google Scholar 

  • Stroosnijder, L., Moore, D., Alharbi, A., Argaman, E., Biazin, B., & van den Elsen, E. (2012). Improving water use efficiency in drylands. Current Opinion in Environmental Sustainability, 4(5), 497–506.

    Article  Google Scholar 

  • Tolk, J. A., & Howell, T. A. (2008). Field water supply: yield relationships of grain sorghum grown in three USA Southern Great Plains soils. Agricultural Water Management, 95(12), 1303–1313.

    Article  Google Scholar 

  • Tuong, T. P., & Bouman, B. A. M. (2003). Rice production in water-scarce environments. In J. W. Kijne, R. Barker, & D. Molden (Eds.), Water productivity in agriculture: Limits and opportunities for improvement. Wallingford: CAB International.

    Google Scholar 

  • Vazifedoust, M., van Dam, J. C., Feddes, R. A., & Feizi, M. (2008). Increasing water productivity of irrigated crops under limited water supply at field scale. Agricultural Water Management, 95, 89–102.

    Article  Google Scholar 

  • Vohland, K., & Barry, B. (2009). A review of in situ rainwater harvesting (RWH) practices modifying landscape functions in African drylands. Agriculture, Ecosystems and Environment, 131, 119–127.

    Article  Google Scholar 

  • Wheeler, T., & von Braun, J. (2013). Climate change impacts on global food security. Science, 341(6145), 508–513.

    Article  CAS  PubMed  Google Scholar 

  • Wichelns, D. (2014). Do estimates of water productivity enhance understanding of farm-level water management? Water, 6(4), 778–795.

    Article  Google Scholar 

  • Xie, H., Tian, Y. Q., Granillo, J. A., & Keller, G. R. (2007). Suitable remote sensing method and data for mapping and measuring active crop fields. International Journal of Remote Sensing, 28(2), 395–411.

    Article  Google Scholar 

  • Yadvinder-Singh, Kukal, S. S., Jat, M. L., & Sidhu, H. S. (2014). Improving water productivity of wheat-based cropping systems in South Asia for sustained productivity. Advances in Agronomy 127, 157–258.

  • Yihun, Y. M., Haile, A. M., Schultz, B., & Erkossa, T. (2013). Crop water productivity of irrigated teff in a water stressed region. Water Resources Management, 27(8), 3115–3125.

    Article  Google Scholar 

  • Yuan, T., Fengmin, L., & Puhai, L. (2003). Economic analysis of rainwater harvesting and irrigation methods, with an example from China. Agricultural Water Management, 60(3), 217–226.

    Article  Google Scholar 

  • Zhang, H., & Oweis, T. (1999). Water-yield relations and optimal irrigation scheduling of wheat in the Mediterranean region. Agricultural Water Management, 38(3), 195–211.

    Article  Google Scholar 

  • Zhang, H., Wang, X., You, M., & Liu, C. (1999). Water-yield relations and water-use efficiency of winter wheat in the North China Plain. Irrigation Science, 19(1), 37–45.

    Article  CAS  Google Scholar 

  • Zoebl, D. (2006). Is water productivity a useful concept in agricultural water management? Agricultural Water Management, 84(3), 265–273.

    Article  Google Scholar 

  • Zwart, S. J., & Bastiaanssen, W. G. M. (2004). Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize. Agricultural Water Management, 69(2), 115–133.

    Article  Google Scholar 

  • Zwart, S. J., Bastiaanssen, W. G. M., de Fraiture, C., & Molden, D. J. (2010). A global benchmark map of water productivity for rainfed and irrigated wheat. Agricultural Water Management, 97(10), 1617–1627.

    Article  Google Scholar 

Download references

Acknowledgments

I appreciate the helpful comments and suggestions provided by two reviewers.

This paper was part of a workshop sponsored by the OECD Co-operative Research Programme on Biological Resource Management for Sustainable Agricultural Systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis Wichelns.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wichelns, D. Water productivity and food security: considering more carefully the farm-level perspective. Food Sec. 7, 247–260 (2015). https://doi.org/10.1007/s12571-015-0426-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12571-015-0426-0

Keywords

Navigation