Skip to main content


Log in

Sustainable intensification: overcoming land and water constraints on food production

  • Original Paper
  • Published:
Food Security Aims and scope Submit manuscript


Feeding over 9 billion people by the second half of this century will require a major paradigm shift in agricultural systems. Agriculture uses approximately 40 % of the terrestrial surface, is the major user of fresh water resources and contributes 17 % of greenhouse gas emissions. In turn, agriculture will be detrimentally affected by climate change in many climatic regions. Impacts of agriculture on ecosystem services include land clearing, loss of forest cover and biodiversity, significant soil degradation and water quality decline. Agricultural production will have to increase, even if we can reduce the rate of increase in demand for food. Given the current pressures on natural resources, this will have to be achieved by some form of agricultural intensification that causes less environmental impact. Therefore, it is not just intensification of agriculture, but ‘sustainable intensification’ that must be at the forefront of the paradigm shift. There is also a need to assess the situation holistically, taking into account population growth and resource intensive consumption patterns, improved systems of governance, changing diets and reducing waste. We review how and where natural resources are being placed under increasing pressure and examine the “ecological footprint” of agriculture. Suggested solutions include the application of existing scientific knowledge, implementation of emerging principles for sustainable land and water management and reclamation of salinized land. Encouragement of community action and private sector supply chain and production codes, backed up by improved national and regional governance and regulation also need to be encouraged if we are to see agricultural production become truly sustainable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Resilience – the ability to withstand shocks and stress, adapt to changing conditions and transform in situations of crisis.


  • Alexandratos, N., & Bruinsma, J. (2012). World agriculture towards 2030/2050: The 2012 revision. ESA Working paper No. 12–03. Rome: FAO.

    Google Scholar 

  • Alliance for Water Stewardship. (2014). The AWS International Water Stewardship Standard. Accessed 21 Aug 2014.

  • Amarasinghe, U., Smakhtin, V., Sharma, B. R. & Eriyagama, N. (2010). Water footprints of milk production: A case study in the Moga District of Punjab, India. Project report submitted to Nestle Ltd. under the project “Measuring the water footprints of milk production: Contributions to livelihood benefits and sustainable water use in the Moga District in Punjab, India.” Colombo, Sri Lanka: International Water Management Institute. 42p.

  • Beddington, J. (2011). Food, energy, water and the climate: A perfect storm of global events? Accessed 4 Sept 2014.

  • Bhaskaran, S., Polonsky, M., Cary, J. & Fernandez, S. (2006). Environmentally sustainable food production and marketing: Opportunity or hype? British Food Journal, 108 (8), 677-90. Accessed Oct 2014.

  • Blackman, A., & Rivera, J. (2010). The Evidence Base for Environmental and Socioeconomic Impacts of “Sustainable” Certification. RFF DP 10–17. Washington: Resources for the Future.

    Google Scholar 

  • Bruinsma, J. (2003). World Agriculture: Towards 2015/2030, an FAO perspective. Rome: FAO.

    Google Scholar 

  • CAWMA. (2007). Water for Food, Water for Life: A Comprehensive Assessment of Water Management in Agriculture. London: Earthscan/ Colombo, Sri Lanka: International Water Management Institute.

    Google Scholar 

  • Chartres, C. J. (2012). Water and Food Security. In R. Rayfuse & N. Wiesfelt (Eds.), The Challenge of Food Security (pp. 128–146). Cheltenham: Edward Elgar.

    Chapter  Google Scholar 

  • Chartres, C. J., & Sood, A. (2013). The food and water paradox. Aquatic Procedia, 1, 3–19.

    Article  Google Scholar 

  • Collins, E. D., & Chandrasekaran, K. (2012). A Wolf in Sheep’s Clothing? An Analysis of the ‘Sustainable Intensification’ of Agriculture. Amsterdam: Friends of the Earth International.

    Google Scholar 

  • Costanza, R., d’Arge, R., de Groot, R., Farberk, S., Grasso, M., Hannon, B., et al. (2007). The value of the world’s ecosystem services and natural capital. Nature, 387, 253–260.

    Article  Google Scholar 

  • DAFF (2009). Landcare. Department of Agriculture, Fisheries and Forestry website Accessed 30 Aug 2014.

  • Eriksson, M., Fang, J., & Dekens, J. (2008). How does climate affect health in the Hindu Kush-Himalaya Region. Regional Health Forum, 12, 11–15.

    Google Scholar 

  • FAO (2004). FAO Statistics FAOSTAT, FAO: Rome.

  • FAO. (2009). How to feed the world in 2050. Proceedings of the Expert Meeting on How to Feed the World in 2050. Rome: Food and Agricultural Organization of the United Nations. Accessed 4 Sept 2014.

  • FAO (2011). The State of the World’s Land and Water Resources for Food and Agriculture (SOLAW) —Managing Systems at Risk. Rome, Italy: Food and Agriculture Organization of the United Nations/ London, UK: Earthscan.

  • Faurés, J.-M., Hoogeveen, J., & Bruinsma, J. (2002). The FAO irrigated area forecast for 2030. Rome: Food and Agriculture Organization.

    Google Scholar 

  • Fischer, R.A., Byerlee, D. & Edmeades, G.O. (2014). Crop yields and global food security: will yield increase continue to feed the world? ACIAR Monograph No. 158. Canberra, Australia: Australian Centre for International Agricultural Research.

  • Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., et al. (2011). Solutions for a cultivated planet. Nature, 478, 337–342.

    Article  CAS  PubMed  Google Scholar 

  • Garnett, T., Appleby, M. C., Balmford, A., Bateman, I. J., Benton, T. G., Bloomer, P., et al. (2013). Sustainable intensification in agriculture: premises and policies. Science, 341(6141), 33–34.

    Article  CAS  PubMed  Google Scholar 

  • GEF. (2009). Global Environmental Facility. Land Degradation Fact Sheet. Accessed Oct 2014.

  • Godfray, H.C.J. & Garnett, T. (2014). Food security and sustainable intensification. Phil. Trans. R. Soc. B, vol. 369: 20120273.

  • Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., et al. (2010). Food Security: the challenge of feeding 9 billion people. Science, 327, 812–818. doi:10.1126/science.1185383.

    Article  CAS  PubMed  Google Scholar 

  • Grafton, R. Q., Pittock, J., Williams, J., Jiang, Q., Possingham, H., & Quiggin, J. (2014). Water planning and hydro-climatic change in the Murray-Darling Basin, Australia. Ambio. doi:10.1007/s13280-014-0495-x.

    PubMed  Google Scholar 

  • Growing Blue. (2014). Water, Economics, Life. Accessed 4 Sept 2014.

  • Gulbenkian Think Tank. (2014). Water and the Future of Humanity: Revisiting Water Security 2014. Braga B., Chartres, C.J., Cosgrove W.J., Veiga da Cunha, L., Gleick, P.H., Kabat, P., Ait Kadi, M., Loucks, D.P., Lundqvist, J., Narain, S. and Xia, J. Calouste Gulbenkian Foundation/Springer. New York. pp.241.

  • Häberli, C. (2012). The WTO and Food Security: What’s wrong with the rules? In R. Rayfuse & N. Weisfelt (Eds.), The Challenge of Food Security: International Policy and Regulatory Frameworks. Cheltenham: Edward Elgar.

    Google Scholar 

  • Hoekstra, A.Y., Chapagain, A., K., Aldaya M.T. & Mekonnen, M.M. (2011). The water footprint assessment manual: Setting the global standard. Earthscan.

  • Howden, M., Soussana, J.-F., Tubiello, F. N., Chhetri, N., Dunlop, M., & Meinke, H. (2007). Adapting agriculture to climate change. PNAS, 104(50), 19691–19696.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • IAASTD. (2008). Agriculture at the Crossroads. International assessment of agricultural knowledge, science and technology for development; a synthesis of the global and sub-global IAASTD reports. McIntyre, B.B. et al.(Eds). Washington, USA: Island Press.

  • IISD. (2013). The Water–Energy–Food Security Nexus: Towards a practical planning and decision-support framework for landscape investment and risk management. Winnipeg: The International Institute for Sustainable Development.

    Google Scholar 

  • IPCC. (2012). Managing the Risks of Extreme Events and Disasters to Advance Climate Change adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Field, C.B., V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.D. Mastrandrea, K.J. Mach, G.-K. Plattner, S.K. Allen, M. Tignor, and P.M. Midgley (Eds.)., Cambridge, UK and New York, NY: Cambridge University Press.

  • Kam, S. P., Badjeck, M., Teh, L., Teh, L., & Tran, N. (2012). Autonomous adaptation to climate change by shrimp and catfish farmers in Vietnam’ s Mekong River delta. Worldfish Working Paper 2012 (pp. 1–24). Penang: WorldFish.

    Google Scholar 

  • Kaphengst, T. (2014). Towards a definition of global sustainable land use? A discussion on theory, concepts and implications for governance. Globalands Discussion Paper AP3.1. Berlin. Accessed 24 Sept 2014 at:

  • Kushiev, H., Noble, A. D., Abdullaev, I., & Toshbekov, U. (2005). Remediation of abandoned saline soils using Glycyrrhiza glabra: a study from the Hungry Steppes of Central Asia. International Journal of Agricultural Sustainability, 3, 103–113.

    Article  Google Scholar 

  • Lundqvist, J. (2010). Producing more or wasting less. Bracing the food security challenge of unpredictable rainfall. In L. Martinez-Cortina, G. Garido, & L. Lopez-Gunn (Eds.), Rethinking water and food security; Fourth Botin Foundation Water Workshop. London: Taylor and Frances.

    Google Scholar 

  • Lundqvist, J., de Fraiture, C. & Molden, D. (2008). Saving Water: From Field to Fork – Curbing Losses and Wastage in the Food Chain. SIWI Policy Brief. SIWI. Briefs/PB From Field to Fork 2008.pdf. Accessed Oct 2014.

  • McMichael, A. J., Powles, S. W., Butler, C. D., & Uauy, R. (2007). Food, livestock production, energy, climate change, and health. The Lancet, 370, 1253–1263.

    Article  Google Scholar 

  • MDBA. (2012). Basin Plan. Murray Darling Basin Authority. Canberra.

  • Murray-Darling Basin Commission. (2003). Murray-Darling Basin Commission - Salinity update 2003: Salinity levels in the Murray River, Murray-Darling Basin Commission, Canberra., salinity/mdbc_salinity_update_2003.

  • Nellemann, C., MacDevette, M., Manders, T., Eickhout, B.,Svihus, B., Prins, A. G. & Kaltenborn, B. P. (Eds). (2009). The environmental food crisis – The environment’s role in averting future food crises. A UNEP rapid response assessment. United Nations Environment Programme, GRID-Arendal,

  • Nkonya, E., Gerber, N.J., von Braun, J. & De Pinto, A. (2011). Economics of land degradation: The costs of action versus inaction. IFPRI Issue Brief 68 September 2011.

  • NRC. (2012). Framework for assessing and recommending upgraded catchment action plans. NSW Natural Resources Commission, Sydney.

  • Pavelic, P., Srisuk, K., Saraphirom, P., Nadee, S., Pholkern, K., Chusanathas, S., et al. (2012). Balancing-out floods and droughts: opportunities to utilize floodwater harvesting and groundwater storage for agricultural development in Thailand. Journal of Hydrology 470–471, 55–64.

  • Poppy, G.M., Jepson, P.C., Pickett, J.A. & Birkett, M.A. (2014). Achieving food and environmental security: new approaches to close the gap. Phil. Trans. R. Soc. B, 369, 20120272.

  • Pretty, J., Toulmin, C., & Williams, S. (2011). Sustainable intensification in African agriculture. International Journal of Agricultural Sustainability, 9(1), 5–24. doi:10.3763/ijas.2010.0583.

    Article  Google Scholar 

  • Qi, L., Söderlund, L., Peilin, W., & Juan, L. (2006). Cultivated land loss arising from the rapid urbanization in China. In Proceedings SUSDEV-China Symposium: Sustainable Agroecosystem Management and Development of Rural–urban Interaction in Regions and Cities of China (pp. 313–27).

  • Ramankutty, N., A. Evan, C. Monfreda, & J. A. Foley. (2008). Farming the Planet. Part 1: the Geographic Distribution of Global Agricultural Lands in the Year 2000. Global Biogeochemical Cycles 22: doi:10.1029/2007GB002952.

  • Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin, S. F., III, Lambin, E. F., et al. (2009). A safe operating space for humanity. Nature, 461, 472–475.

    Article  PubMed  Google Scholar 

  • Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A.C., Müller, C., Arneth, A., et al. (2014). Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. PNAS, vol. 111 (9), 3268–3273.

  • Sanchez, P.A. Shepherd, K.D., Soule, M.J., Place, F.M., Buresh, R.J., Izac, A-M.Net al. (1997). Soil Fertility Replenishment in Africa: An Investment in Natural Resource Capital. In Replenishing Soil Fertility in Africa. Soil Sci Soc. Am. Special Pub No 51. Madison Wi.

  • Schmidt, C., Mussell, A. & Sweetland, J. (2013). Evaluation Of Agri-Food Sustainability Certification Systems, George Morris Centre,Guelph, Ontario, Canada.

  • Seckler, D., Molden, D., Amarasinghe, U. & de Fraiture, C. (2000). Water Issues for 2025: A Research Perspective. Colombo International Water Management Institute.

  • Shiklomanov, I. A. (2000). Appraisal and assessment of world water resources. Water International, 25, 11–32.

    Article  Google Scholar 

  • Shrestha, A. B., Wake, C. B., Mayewski, P. A., & Dibb, J. E. (1999). Maximum temperature trends in the himalaya and its vicinity: an analysis based on records from Nepal for the period 1971–1994. Journal of Climate, 12, 2775–2886.

    Article  Google Scholar 

  • Smakhtin, V., Revenga, C., & Döll, P. (2004). Taking into Account Environmental Water Requirements in Global-scale Water Resources Assessments (Research Report 2, Comprehensive Assessment of Water Management in Agriculture). Colombo: International Water management Institute.

    Google Scholar 

  • Sood, A., Muthuwatta, L., & McCartney, M. (2013). A SWAT evaluation of the effect of climate change on the hydrology of the Volta River basin. Water International, 38, 297–311.

    Article  Google Scholar 

  • Steenwerth, K. L., Hodson, A. K., Bloom, A. J., Carter, M. R., Cattaneo, A., Chartres, C. J., et al. (2014). Climate-smart agriculture global research agenda: science for action. Agriculture and Food Security, 3, 11. doi:10.1186/2048-7010-3-11.

    Article  Google Scholar 

  • Stern Review. (2006). The economics of climate change, Part II: The impacts of climate change on growth and development (pp. 67–73). UK: Stern Review.

    Google Scholar 

  • Su, N., Bethune, M., Mann, L., & Heuperman, A. (2005). Simulating water and salt movement in tile-drained fields irrigated with saline water under a Serial Biological Concentration management scenario. Agricultural Water Management, 78(3), 165–180.

    Article  Google Scholar 

  • Sundrop Farms. (2014). . Accessed 4 Sept 2014.

  • Taylor, R. G., Scanlon, B., Doll, P., Rodell, M., van Beek, R., Wada, Y., et al. (2013). Ground water and climate change. Nature Climate Change, 3, 321–330.

    Google Scholar 

  • Tilman, D., Balzer, C., Hill, - aff-3 J. &, - aff-1 B.L. (2011). Global food demand and the sustainable intensification of agriculture. PNAS vol. 108 no. 50, 20260–20264.

  • UN WWDP. (2009). Water in a Changing World. Paris: UNESCO. World Water Development report 3.

    Google Scholar 

  • UNEP. (2007). The Global Environment Outlook Report. UNEP, Nairobi. Available online at: Accessed 4 Sept 2014.

  • UNEP. (2014). Assessing Global Land Use: Balancing Consumption with Sustainable Supply. A Report of the Working Group on Land and Soils of the International Resource Panel. Bringezu, S., Schütz, H., Pengue, W., O’Brien, M., Garcia, F., Sims, R., Howarth, R., Kauppi, L., Swilling, M. & Herrick, J. Nairobi, Kenya: UNEP.

  • Unilever. (2010). Unilever Sustainable Agriculture Code. Accessed Oct 2014.

  • Wada, Y., Wisser, D., Eisner, S., Flörke, M., Gerten, D., Haddeland, I., et al. (2013). Multimodel projections and uncertainties of irrigation water demand under climate change. Geophysics Research Letters. doi:10.1002/grl.50686.

    Google Scholar 

  • Walker, B., Abel, N., Anderies, J. & Ryan, P. (2009). Resilience, adaptability and transformability in the Goulburn-Broken Catchment, Australia. Ecology and Society, 14, (1), Accessed Oct 2014.

  • Wilde, B. (2013). Strategic planning on the coast: the benefits of applying systems and resilience approaches. Sydney: NSW Natural Resources Commission.

    Google Scholar 

Download references


This paper was part of a workshop sponsored by the OECD Co-operative Research Programme on Biological Resource Management for Sustainable Agricultural Systems.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Colin J. Chartres.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chartres, C.J., Noble, A. Sustainable intensification: overcoming land and water constraints on food production. Food Sec. 7, 235–245 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: