Managing the biological environment to promote and sustain crop productivity and quality

Abstract

Global crop production needs to double by 2050 in order to meet demands from rising populations, diet shifts and biofuels. Production must increase through more efficient use of currently available arable land to prevent encroachment on land that otherwise provides vital services to the earth and its people (i.e. through increased biodiversity and reduced carbon emissions). Significant improvements can be realised through enhanced management of critical diseases of crops that are pivotal to food security and income generation. To achieve this, the dynamic and complex interactions between crops and beneficial or antagonistic organisms that characterise the biological environment, must be understood. For Sub-Saharan Africa (SSA) a crop healthcare system is required that encompasses national responsibility and regional cooperation, and which harnesses global excellence in terms of the knowledge and methods that are available for implementation. This system would be able to control crop diseases in a pre-emptive and cost efficient manner and avoid the current scenario of belatedly combating largescale epidemics. Components would include: risk assessment to predict impacts on food and feed value chains; targeted surveillance; fit-for-purpose diagnostics; control intervention packages; extension mechanisms; and enabling policy environments. Each component would be refined, based on practical feedback and results from research targeted to address knowledge gaps. Specific examples are presented for viruses of cassava, viral and bacterial diseases of banana, stem rust of wheat and a new viral disease complex of maize. Finally, the links among disease control and improved crop quality, consumer health and safe trade are discussed through biological control interventions for aflatoxin in SSA.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Abele, S., & Pillay, M. (2007). Bacterial wilt and drought stresses in banana production and their impact on economic welfare in Uganda: implications for banana research in East African highlands. Journal of Crop Improvement, 19, 173–191.

    Article  Google Scholar 

  2. Adams, I. P., Miano, D. W., Kinyua, Z. M., Wangai, A., Kimani, E., et al. (2013). Use of next-generation sequencing for the identification and characterization of Maize chlorotic mottle virus and Sugarcane mosaic virus causing maize lethal necrosis in Kenya. Plant Pathology, 62(4), 741–749.

    CAS  Article  Google Scholar 

  3. Adikini, S., Tripathi, L., Beed, F., Tusiime, G., Magembe, E. M., & Kim, D. J. (2011). Development of a specific molecular tool for detecting Xanthomonas campestris pv. musacearum in banana plants. Plant Pathology 60, 443–452.

  4. Adikini, S., Beed, F., Tusiime, G., Tripathi, L., Kyamanywa, S., Lewis-Ivey, M., et al. (2013). Spread of Xanthomonas campestris pv. musacearum in banana plants: implications for management of banana Xanthomonas wilt disease. Canadian Journal of Plant Pathology, 35(4), 458–468.

    Article  Google Scholar 

  5. Adriko, J., Aritua, V., Mortensen, C. N., Tushemereirwe, W. K., Kubiriba, J., & Lund, O. S. (2012). Multiplex PCR for specific and robust detection of Xanthomonas campestris pv. musacearum in pure culture and infected plant material. Plant Pathology, 61, 489–497.

    CAS  Article  Google Scholar 

  6. Atim, M., Beed, F., Tusiime, G., Tripathi, L., & van Asten, P. (2013). Increased potassium, calcium and nitrogen application reduces banana Xanthomonas wilt expression caused by Xanthomonas campestris pv. musacearum. Plant Disease, 97(1), 123–130.

    CAS  Article  Google Scholar 

  7. Bateman, R. P., & Alves, R. T. (2000). Delivery systems for mycoinsecticides using oil-based formulations. Aspects of Applied Biology, 57, 163–170.

    Google Scholar 

  8. BBC (2013). Nigerian Agriculture Minister Akinwumi Adesina has been named Forbes African of the Year for his reforms to the country’s farming sector. http://www.bbc.co.uk/news/world-africa-25199787. Accessed 20 December 2013.

  9. Beed, F. (2008). Improving capacity for plant healthcare. IITA R4D Review http://r4dreview.org/2008/09/increasing-capacity-for-plant-healthcare/. Accessed 1 November 2013.

  10. Beed, F., & Dubois, T. (2009). The role of International Institute of Tropical Agriculture in weed biological control. Chapter 23. In R. Muniappan, G. V. P. Reddy, & A. Raman (Eds.), Biological control of tropical weeds using arthropods (pp. 453–465). Cambridge: Cambridge University Press. ISBN 978-0-521-87791-6.

    Google Scholar 

  11. Beed, F., Benedetti, A., Cardinali, G., Chakraborty, S., Dubois, T., Garrett, K., et al. (2011). Climate change and micro-organism genetic resources for food and agriculture: state of knowledge, risks and opportunities. Background Study Paper No. 57, Commission on Genetic Resources for Food and Agriculture, prepared for 13th Regular Session. http://www.fao.org/docrep/meeting/022/mb392e.pdf. Accessed 4 December 2013.

  12. Beed, F., Dubois, T., & Markham, R. (2012). A strategy for banana research and development in Africa. Scripta Horticulturae, Number 12. A Publication of the International Society for Horticultural Science (ISHS). ISSN 1813-9205. ISBN 978 90 6605 664 0. 107 pp. http://www.actahort.org/chronica/pdf/sh_12.pdf. Accessed 4 January 2014.

  13. Beed, F., Kubiriba, J., Mugalula, A., Kolowa, H., Bulili, S., Nduwayezu, A., et al. (2013). Processes and partnerships for effective regional surveillance of banana (Musa spp.) diseases. Chapter 25. In G. Blomme, P. van Asten, & B. Vanlauwe (Eds.), Banana systems in the humid highlands of Sub-Saharan Africa: Enhancing resilience and productivity (pp. 210–216). Wallingford: CABI.

    Google Scholar 

  14. Bigirimana, S., Barumbanze, P., Obonyo, R., & Legg, J. P. (2004). First evidence for the spread of East African cassava mosaic virus-Uganda (EACMV-UG) and the pandemic of severe cassava mosaic disease to Burundi. Plant Pathology, 53, 231.

    Article  Google Scholar 

  15. Binder, E. M., Tan, L. M., Chin, L. J., Handl, J., & Richard, J. (2007). Worldwide occurrence of mycotoxins in commodities, feeds and feed ingredients. Animal Feed Science and Technology, 137, 265–282.

    CAS  Article  Google Scholar 

  16. Boa, E. (2010). Rapid responses to new plant diseases: the use of going public to monitor the spread of Xanthomonas wilt and control napier grass stunt in East Africa. Acta Horticulturae, 879, 705–716.

    Google Scholar 

  17. Boer, S. H., & Hall, J. W. (2000). Proficiency testing in a laboratory accreditation program for the bacterial ring rot pathogen of potato. Plant Disease, 84, 649–653.

    Article  Google Scholar 

  18. Boko, M., Niang, I., Nyonga, A., Vogel, C., Githeko, A., Medany, M., et al. (2007). In M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. Van der Linden, & C. E. Hanson (Eds.), Africa. Climate change: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 433–467). Cambridge: Cambridge University Press.

    Google Scholar 

  19. Bouwmeester, H., Abele, S., Manyong, V. M., Legg, C., Mwangi, M., Nakato, V., et al. (2010). The potential benefits of GIS techniques in disease and pest control: an example based on a regional project in Central Africa. Acta Horticulturae, 879, 333–340.

    Google Scholar 

  20. Bouwmeester, H., Heuvelink, G.M.B., Legg, J.P., & Stoorvogel, J.J. (2012). Comparison of disease patterns assessed by three independent surveys of cassava mosaic virus disease in Rwanda and Burundi. Plant Pathology, 61, 399–412.

    Google Scholar 

  21. Brown, J. K. M., & Hovmøller, M. S. (2002). Aerial dispersal of pathogens on the global and continental scalesand its impact on plant disease. Science, 297, 537–541.

    CAS  PubMed  Article  Google Scholar 

  22. Brown, R. L., Menkir, A., Chen, Z., Bhatnagar, D., Yu, J., Yao, H., et al. (2013). Breeding aflatoxin resistant maize lines using recent advances in technologies—a review. Food Additives & Contaminants: Part A, 30, 1382–1391.

    CAS  Article  Google Scholar 

  23. Carter, B. A., Reeder, R., Mgenzi, S. R., Kinyua, Z. M., Mbaka, J. N., Doyle, K., et al. (2010). Identification of Xanthomonas vasicola (Xanthomonas campestris pv. musacearum), causative organism of Banana Xanthomonas Wilt, in Tanzania, Kenya and Burundi. Plant Pathology, 59(2), 403.

    Article  Google Scholar 

  24. CDC (2012). Kenya Aids Indicator Survey 2007: Final report. http://stacks.cdc.gov/view/cdc/12122. Accessed 24 November 2013.

  25. Chadès, L., Martin, T. G., Nicol, S., Burgman, M. A., Possingham, H. P., & Buckley, Y. M. (2011). General rules for managing and surveying networksof pests, diseases, and endangered species. PNAS, 108(20), 8323–8328.

    PubMed Central  PubMed  Article  Google Scholar 

  26. Chen, X. (2005). Epidemiology and control of stripe rust Puccinia striiformis f.sp. tritici on wheat. Canadian Journal of Plant Pathology, 27, 314–337.

    Article  Google Scholar 

  27. Chen, W., Wellings, C., Chen, X., Kang, Z., & Liu, T. (2013). Wheat stripe (yellow) rust caused by Puccinia striiformis f. sp. tritici. Molecular Plant Pathology. doi:10.1111/mpp.12116.

    Google Scholar 

  28. Coletta-Filho, H. D., Francisco, C. S., & Almeida, R. P. P. (2014). Temporal and spatial scaling of the genetic structure of a vector-borne plant pathogen. Phytopathology, 104, 120–125.

    Google Scholar 

  29. Cotty, P. J. (2006). Biocompetitive exclusion of toxigenic fungi. In D. Barug, D. Bhatnagar, H. P. van Egmond, J. W. van der Kamp, W. A. van Osenbruggen, & A. Visconti (Eds.), The mycotoxin factbook (pp. 179–197). Wageningen: Wageningen Academic Publishers.

    Google Scholar 

  30. Danielsen, S., Centeno, J., López, J., Lezama, L., Varela, G., Castillo, P., et al. (2013). Innovations in plant health services in Nicaragua: from grassroots experiment to a systems approach. Journal of International Development, 25, 968–986. doi:10.1002/jid.1786.

    Article  Google Scholar 

  31. European Mycotoxins Awareness Network (2012). Mycotoxins legislation worldwide. www.mycotoxins.com. Accessed 30 December 2013.

  32. Evenson, R. E., & Gollin, D. (2003). Assessing the impact of the Green Revolution, 1960 to 2000. Science, 300(5620), 758–762.

    CAS  PubMed  Article  Google Scholar 

  33. Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., et al. (2011). Solutions for a cultivated planet. Nature, 478, 337–342.

    CAS  PubMed  Article  Google Scholar 

  34. Garrett, K. A. (2012). Information networks for disease: commonalities in human management networks and within-host signalling networks. European Journal of Plant Pathology, 133, 75–88.

    Article  Google Scholar 

  35. Garrett, K. A., et al. (2009). Intraspecific functional diversity in hosts and its effect on disease risk across a climatic gradient. Ecological Applications, 19, 1868–1883.

    CAS  PubMed  Article  Google Scholar 

  36. Garrett, K. A., et al. (2011). Complexity in climate-change impacts: an analytical framework for effects mediated by plant disease. Plant Pathology, 60, 15–30.

    Article  Google Scholar 

  37. Gong, Y., Cardwell, K., Hounsa, A., Egal, S., Turner, P. C., Hall, A. J., et al. (2002). Dietary aflatoxin exposure and impaired growth in young children from Benin and Togo: cross-sectional study. British Medical Journal (Clinical Research Ed.), 325, 20–21.

    CAS  Article  Google Scholar 

  38. Groopman, J. D., Cain, L. G., & Krusler, C. C. (1988). Aflatoxin exposure in human populations: measurements and relationship to cancer. CRC Critical Reviews in Toxicology, 19, 113–145.

    CAS  PubMed  Article  Google Scholar 

  39. Grzywacz, D., Stevenson, P., Mushobozi, W. L., Belmain, S., & Wilson, K. (2014). The use of indigenous ecological resources for pest control in Africa. Food Security. doi:10.1007/s12571-013-0313-5.

    Google Scholar 

  40. Gullino, M. L., Fletcher, J., Gamliel, A., & Stack, J. P. (Eds.). (2008). Crop biosecurity: Assuring our global food supply. Springer: New York. 148 pp.

    Google Scholar 

  41. Harrison, B. D., Zhou, X., Otim-Nape, G. W., Liu, Y., & Robinson, D. J. (1997). Role of a novel type of double infection in the geminivirus-induced epidemic of severe cassava mosaic in Uganda. Annals of Applied Biology, 131, 437–448.

    Article  Google Scholar 

  42. Hendrickse, R. G. (1997). Of sick turkeys, kwashiorkor, malaria, perinatal mortality, heroin addicts and food poisoning: research on the influence of aflatoxins on child health in the tropics. Annals of Tropical Medicine and Parasitology, 91(7), 787–793.

    CAS  PubMed  Article  Google Scholar 

  43. Hoeschle-Zeledon, I., Neuenschwander, P., & Kumar, L. (2013). Regulatory challenges for biological control. The CGIAR Systemwide Program on Integrated Pest Management. ISBN 978-978-8444-28-2. 44 pp. http://www.spipm.cgiar.org/articles/-/asset_publisher/N3xX/content/regulatory-challenges-for-biological-control;jsessionid=86C0172432FF5D208B9DC334CA255866?redirect=%2F. Accessed 22 November 2013.

  44. Holt, J., van der Gaag, D. J., Leach, A. W., MacLeod, A., Baker, R. H. A., & Mumford, J. D. (2013). A quantitative interpretation of the entry section of the EPPO decision-support scheme for pest risk analysis. EPPO Bulletin. doi:10.1111/epp.12086.

    Google Scholar 

  45. Hovmøller, M. S., Justesen, A. F., & Brown, J. K. M. (2002). Clonality and long-distance migration of Puccinia striiformis f.sp. tritici in north-west Europe. Plant Pathology, 51, 24–32.

    Article  Google Scholar 

  46. Hovmøller, M. S., Sørensen, C. K., Walter, S., & Justesen, A. F. (2011). Diversity of Pucciniastriiformis on cereals and grasses. Annual Review of Phytopathology, 49, 197–217.

    PubMed  Article  Google Scholar 

  47. IITA News (2013). New banana disease to Africa found in Mozambique, 29th November, 2013 http://www.iita.org/2013-press-releases/-/asset_publisher/CxA7/content/new-banana-disease-to-africa-found-in-mozambique?redirect=%2Fhome#.UpyPAsSmiAg. Accessed 4 January 2014.

  48. IPPC (2003). Identification of risks and management of invasive alien species using the IPPC framework. Proc. Worksh. Invasive Alien Species International Plant Protection Convention, Braunschweig, Germany, Sept. 22–26. Rome: FAO.

  49. IPPC (2008). Considerations for developing a phytosanitary capacity building strategy for developing countries. Proc. Open-ended Working Group on Building National Phytosanitary Capacity, Dec. 8–12, Rome. https://www.ippc.int/IPP/En/default.jsp. Accessed 4 January 2014.

  50. Isard, S. A., Gage, S. H., Comtois, P., & Russo, J. M. (2005). Principles of the atmospheric pathway for invasive species applied to soybean rust. BioScience, 55(10), 851–861.

    Article  Google Scholar 

  51. Ivey, M. L. L., Tusiime, G., & Miller, S. A. (2010). A polymerase chain reaction assay for the detection of Xanthomonas campestris pv. musacearum in banana. Plant Disease, 94, 109–114.

    Article  Google Scholar 

  52. James, B., Neuenschwander, P., Markham, R. H., Anderson, P., Braun, A., et al. (2003). Bridging the gap with the CGIAR Systemwide Program on Integrated Management. In K. Maredia, D. Dakouo, & D. Mota-Sanchez (Eds.), Integrated pest management in the global arena (pp. 419–434). Wallingford: CABI International.

    Google Scholar 

  53. Jeger, M. J., Pautasso, M., Holdenrieder, O., & Shaw, M. W. (2007). Modelling disease spread and control in networks: implications for plant sciences. New Phytologist, 174, 279–297.

    PubMed  Article  Google Scholar 

  54. Khlangwiset, P., Shephard, G. S., & Wu, F. (2011). Aflatoxins and growth impairment: a review. Critical Reviews in Toxicology, 41, 740–755.

    CAS  PubMed  Article  Google Scholar 

  55. Kubiriba, J., Bagamba, F., Rockfeller, E., & Tushemereirwe, W. K. (2012). The changing spread dynamics of banana Xanthomonas wilt (BXW) in Uganda. Uganda Journal of Agricultural Sciences, 13(1), 53–60.

    Google Scholar 

  56. Kumar, L., Hanna, R., Alabi, O. J., Soko, M. M., Oben, T. T., Vangu, G. H. P., et al. (2011). Banana bunchy top virus in sub-Saharan Africa: investigations on virus distribution and diversity. Virus Research, 159(2), 171–182.

    CAS  PubMed  Article  Google Scholar 

  57. Langewald, J., Ouambama, Z., Mamadou, A., Peveling, R., Stolz, I., Bateman, R., et al. (1999). Comparison of an organophosphate insecticide with a mycoinsecticide for the control of Oedaleus senegalensis Krauss (Orthoptera: Acrididae) and other Sahelian grasshoppers in the field at operational scale. Biocontrol Science and Technology, 9, 199–214.

    Article  Google Scholar 

  58. Langewald, J., Stolz, I., Everts, J., & Peveling, R. (2003). Towards the registration of microbial insecticides in Africa: Non-target arthropod testing on Green Muscle, a grasshopper and locust control product based on the fungus Metarhizium anisopliae var. acridum. In P. Neuenschwander, C. Borgemeister, & J. Langewald (Eds.), Biological control in IPM systems in Africa (pp. 207–225). Wallingford: CABI Publishing.

    Google Scholar 

  59. Legg, J. P. (1999). Emergence, spread and strategies for controlling the pandemic of cassava mosaic virus disease in east and central Africa. Crop Protection, 18, 627–637.

    Article  Google Scholar 

  60. Legg, J. P. (2010). Epidemiology of a whitefly-transmitted cassava mosaic geminiviruspandemic in Africa. In P. A. Stansly & S. E. Naranjo (Eds.), Bemisia: Bionomics and management of a global pest (pp. 233–257). Dordrecht: Springer.

    Google Scholar 

  61. Legg, J. P., Okao-Okuja, G., Mayala, R., & Muhinyuza, J. B. (2001). Spread into Rwanda of the severe cassava mosaic virus disease pandemic and the associated Uganda variant of East African cassava mosaic virus (EACMV-Ug). Plant Pathology, 50, 796.

    Article  Google Scholar 

  62. Legg, J. P., French, R., Rogan, D., Okao-Okuja, G., & Brown, J. K. (2002). A distinct Bemisia tabaci (Gennadius) (Hemiptera: Sternorrhyncha: Aleyrodidae) genotype cluster is associated with the epidemic of severe cassava mosaic virus disease in Uganda. Molecular Ecology, 11, 1219–1229.

    CAS  PubMed  Article  Google Scholar 

  63. Legg, J. P., Ndjelassil, F., & Okao-Okuja, G. (2004). First report of cassava mosaic disease and cassava mosaic geminiviruses in Gabon. Plant Pathology, 53, 232.

    Article  Google Scholar 

  64. Legg, J. P., Owar, B., Sseruwagi, P., & Ndunguru, J. (2006). Cassava mosaic virus disease in East and Central Africa: epidemiology and management of a regional pandemic. Advances in Virus Research, 67, 355–418.

    CAS  PubMed  Article  Google Scholar 

  65. Legg, J. P., Jeremiah, S. C., Obiero, H. M., Maruthi, M. N., Ndyetabula, I., Okao-Okuja, G., et al. (2011). Comparing the regional epidemiology of the cassava mosaic and cassava brown streak pandemics in Africa. Virus Research, 159, 161–170.

    CAS  PubMed  Article  Google Scholar 

  66. Legg, J. P., et al. (2013). Spatio-temporal patterns of genetic change amongst populations of cassava Bemisia tabaci whiteflies driving virus pandemics in East and Central Africa. Virus Research. doi:10.1016/j.virusres.2013.11.018.

    PubMed  Google Scholar 

  67. Lokossou, B., Gnanvossou, D., Ayodeji, O., Akplogan, F., Safiore, A., Migan, D. Z., et al. (2012). Occurrence of banana bunchy top virus in banana and plantain (Musa sp.) in Benin. New Disease Reports: BSPP, 25, 13. doi:10.5197/j.2044-0588.2012.025.013.

    Article  Google Scholar 

  68. Lomer, C. J., Bateman, R. P., Johnson, D. L., Langewald, J., & Thomas, M. (2001). Biological control of locusts and grasshoppers. Annual Review of Entomology, 46, 667–702.

    CAS  PubMed  Article  Google Scholar 

  69. Mbanzibwa, D. R., Tian, Y. P., Tugume, A. K., Mukasa, S. B., Tairo, F., Kyamanywa, S., et al. (2009). Genetically distinct strains of cassava brown streak virus in the Lake Victoria basin and the Indian Ocean coastal area of East Africa. Archives of Virology, 154, 353–359.

    CAS  PubMed  Article  Google Scholar 

  70. Mehl, H. L., Jaime, R., Callicott, K. A., Probst, C., Garber, N. P., Ortega-Beltran, A., et al. (2012). Aspergillus flavus diversity on crops and in the environment can be exploited to reduce aflatoxin exposure and improve health. Annals of the New York Academy of Sciences, 1273, 7–17.

    PubMed  Article  Google Scholar 

  71. Miller, S. E., Beed, F. D., & Harmon, C. L. (2009). Plant disease diagnostic capabilities and networks. Annual Review of Phytopathology, 47, 15–38.

    CAS  PubMed  Article  Google Scholar 

  72. Miller, S. A., Kinyua, Z. M., Beed, F., Harmon, C. L., Xin, J., Vergot, P., et al. (2010). The International Plant Diagnostic Network (IPDN) in Africa: improving capacity for diagnosing diseases of banana (Musa spp.) and other African crops. Acta Horticulturae, 879, 341–348.

    Google Scholar 

  73. Moslonka-Lefebvre, M., et al. (2011). Networks in plant epidemiology: from genes to landscapes, countries, and continents. Phytopathology, 101, 392–403.

    PubMed  Article  Google Scholar 

  74. Mullié, W. C., & Guèye, Y. (2010). Does bird predation enhance the impact of Green Muscle® (Metarhizium acridum) used for grasshopper control? Journal of Orthoptera Research, 19(1), 139–155.

    Article  Google Scholar 

  75. Mwangi, M., Mwebaze, M., Bandyopadhyay, R., Aritua, V., Eden-Green, S., Tushemereirwe, W., et al. (2007). Development of a semi selective medium for isolating Xanthomonas campestris pv. musacearum from insect vectors, infected plant material and soil. Plant Pathology, 56, 383–390.

    CAS  Article  Google Scholar 

  76. Nakato, G. V., Beed, F. D., Ramathani, I., Kubiriba, J., Rwomushana, I., & Opio, F. (2012). Risk of banana Xanthomonas wilt spread through trade. Journal of Crop Protection, 2(2), 151–161.

    Google Scholar 

  77. Nakato, V., Akinbade, S. A., Kumar, L., Bandyopadhyay, R., & Beed, F. (2013). Development of ELISA for the detection of Xanthomonas campestris pv. musacearum, the causal agent of BXW: Banana Xanthomonas wilt. Chapter 11. In G. Blomme, P. van Asten, & B. Vanlauwe (Eds.), Banana systems in the humid highlands of Sub-Saharan Africa: Enhancing resilience and productivity (pp. 93–101). Wallingford: CABI.

    Google Scholar 

  78. National Grain and Feed Association (2011). FDA regulatory guidance for mycotoxins: A guide for grain elevators, feed manufacturers, grain processors and exporters. www.ngfa.org/wp-content/uploads/NGFAComplianceGuide-FDARegulatoryGuidanceforMycotoxins8-2011.pdf. Accessed 4 November 2013.

  79. Nature News. (2013). Fungus threatens top banana. Fears rise for Latin American industry as devastating disease hits leading variety in Africa and Middle East. December 12th 2013. Nature, 504, 195–196. http://www.nature.com/news/fungus-threatens-top-banana-1.14336. Accessed 18 December 2013.

    Article  Google Scholar 

  80. Ndungo, V., Eden-Green, S., Blomme, G., Crozier, J., & Smith, J. (2006). Presence of banana Xanthomonas wilt (Xanthomonas campestris pv. musacearum) in the Democratic Republic of Congo (DRC). Plant Pathology, 55, 294.

    Article  Google Scholar 

  81. Neuenschwander, P. (2004). Harnessing nature in Africa; biological pest control can benefit the pocket, health and the environment. Nature, 432, 801–802.

    CAS  PubMed  Article  Google Scholar 

  82. OECD/FAO (2012). OECD-FAO Agricultural Outlook 2012–2021, OECD Publishing and FAO. Available: http://dx.doi.org/10.1787/agr_outlook-2012-en. Accessed 3 January 2014.

  83. Oerke, E. C. (2006). Crop losses to pests. Journal of Agricultural Science, 144, 31–43.

    Article  Google Scholar 

  84. Otim-Nape, G. W., Alicai, T., & Thresh, J. M. (2001). Changes in the incidence andseverity of cassava mosaic virus disease, varietal diversity and cassava production in Uganda. Annals of Applied Biology, 138, 313–327.

    Article  Google Scholar 

  85. Petter, F., Roy, A. S., & Smith, I. (2008). International standards for the diagnosis of regulated pests. European Journal of Plant Pathology, 121, 331–337.

    Article  Google Scholar 

  86. Pingali, P. L. (2012). Green Revolution: impacts, limits, and the path ahead. Proceedings of the National Academy of Sciences, 109, 12302–12308.

    CAS  Article  Google Scholar 

  87. Probst, C., Bandyopadhyay, R., Price, L. E., & Cotty, P. J. (2011). Identification of atoxigenic Aspergillus flavus isolates to reduce aflatoxin contamination of maize in Kenya. Plant Disease, 95, 212–218.

    CAS  Article  Google Scholar 

  88. Ramathani, I., & Beed, F. (2013). Use of DNA capture kits to collect Xanthomonas campestris pv. musacearum and banana bunchy top virus pathogen DNA for molecular diagnostics. Chapter 13. In G. Blomme, P. van Asten, & B. Vanlauwe (Eds.), Banana systems in the humid highlands of Sub-Saharan Africa: Enhancing resilience and productivity (pp. 109–116). Wallingford: CABI.

    Google Scholar 

  89. Ray, D. K., Mueller, N. D., West, P. C., & Foley, J. A. (2013). Yield trends are insufficient to double global crop production by 2050. PLoS ONE, 8(6), 1–8.

    Google Scholar 

  90. Reynolds, A., & Owen, L. (2010). Organisation of proficiency testing for plant health diagnostic tests: the experience of FAPAS®. Bulletin OEPP / EPPO Bulletin, 40, 86–90.

    Article  Google Scholar 

  91. Roderick, H., Tripathi, L., Babirye, A., Wang, D., Tripathi, J., Urwin, P. E., et al. (2012). Generation of transgenic plantain (Musa spp.) with resistance to plant pathogenic nematodes. Molecular Plant Pathology, 13, 842–851.

    CAS  PubMed  Article  Google Scholar 

  92. Savary, S., Ficke, A., Aubertot, J. N., & Hollier, C. (2012). Crop losses due to diseases and their implications for global food production losses and food security. Food Security 4, 519–537.

    Google Scholar 

  93. Scott, J. B., Gent, D. H., Pethybridge, S. J., & Hay, F. S. (2014). Spatiotemporal characterization of sclerotinia crown rot epidemics in pyrethrum. Plant Disease, 98(20), 267–274.

    Article  Google Scholar 

  94. Singh, R. P., Hodson, D. P., Jin, Y., Huerta-Espino, J., Kinyua, M. G., Wanyera, R., et al. (2006). Current status, likely migration and strategies to mitigate the threat to wheat production from race Ug99 (TTKS) of stem rust pathogen. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 1, No. 54.

  95. Singh, R. P., Hodson, D. P., Huerta-Espino, J., et al. (2008). Will stem rust destroy the world’s wheat crop? Advances in Agronomy, 98, 271–309.

    CAS  Article  Google Scholar 

  96. Singh, R. P., Hodson, D. P., Huerta-Espino, J., et al. (2011). The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annual Review of Phytopathology, 49, 465–481.

    CAS  PubMed  Article  Google Scholar 

  97. Smith, J. J., Waage, J., Woodhall, J. W., Bishop, S. J., & Spence, N. J. (2008). The challenge of providing plant pest diagnostic services for Africa. European Journal of Plant Pathology, 121, 365–375.

    Article  Google Scholar 

  98. Strange, R. N., & Scott, P. R. (2005). Plant disease: a threat to global food security. Annual Review of Phytopathology, 43, 83–116.

    CAS  PubMed  Article  Google Scholar 

  99. Sumberg, J. (2012). Mind the (yield) gap(s). Food Security, 4(4), 509–518.

    Article  Google Scholar 

  100. Sutrave, S., Scoglio, C., Isard, S. A., Hutchinson, J. M. S., & Garrett, K. A. (2012). Identifying Highly Connected Counties Compensates for Resource Limitations when Evaluating National Spread of an Invasive Pathogen. PLoS ONE, 7(6), e37793. doi:10.1371/journal.pone.0037793.

  101. Tripathi, L., Mwangi, M., Abele, S., Aritua, V., Tushemereirwe, W. K., & Bandyopadhyay, R. (2009). Xanthomonas wilt: a threat to banana production in east and central Africa. Plant Disease, 93, 440–451.

    Article  Google Scholar 

  102. Tripathi, L., Mwaka, H., Tripathi, J. N., & Tushemereirwe, W. K. (2010). Expression of sweet pepper Hrap gene in banana enhances resistance to Xanthomonas campestris pv. musacearum. Molecular Plant Pathology, 11, 721–731.

    CAS  PubMed  Google Scholar 

  103. Tushemereirwe, W., Kangire, A., Ssekiwoko, F., Offord, L. C., Crozier, J., Boa, E., et al. (2004). First report of Xanthomonas campestris pv. musacearum on banana in Uganda. Plant Pathology, 53, 802.

    Article  Google Scholar 

  104. United Nations (2013). Department of Economic and Social Affairs, Population Division World Population Prospects: The 2012 Revision, Highlights and Advance Tables. Working Paper No. ESA/P/WP.228. http://esa.un.org/unpd/wpp/Documentation/pdf/WPP2012_HIGHLIGHTS.pdf. Accessed 13 November 2013.

  105. Urdea, M., Penny, L. A., Olmsted, S. S., Giovanni, M. Y., Kaspar, P., et al. (2006). Requirements for high impactdisease diagnostics in the developing world. Nature, 444, 73–79. doi:10.1038/nature05448.

    PubMed  Article  Google Scholar 

  106. Waage, J. K., & Mumford, J. D. (2008). Agricultural biosecurity. Philosophical Transactions of the Royal Society, 363, 863–876.

    CAS  Article  Google Scholar 

  107. Waage, J. K., Woodhall, J. W., Bishop, S. J., Smith, J. J., Jones, D. J., & Spence, N. J. (2009). Patterns of plant pestintroductions in Europe and Africa. Agricultural Systems, 99(1), 1–5.

    Article  Google Scholar 

  108. Wamboga-Mugirya, P. (2006). Uganda ‘needs biotech law’ to save banana sector. SciDevNet. http://www.scidev.net/en/news/uganda-needsbiotech-law-to-save-banana-sector.html. Accessed 10 December 2013.

  109. Wangai, A. W., Redinbaugh, M. G., Kinyua, Z. M., Miano, D. W., Leley, P. K., Kasina, M., et al. (2012). First report of Maize chlorotic mottle virus and maize lethal necrosis in Kenya. Plant Disease, 96(10), 1582.

    Article  Google Scholar 

  110. Wingen, L. U., Shaw, M. W., & Brown, J. K. M. (2013). Long-distance dispersal and its influence on adaptation to host resistance in a heterogeneous landscape. Plant Pathology, 62, 9–20.

    Article  Google Scholar 

  111. Wu, F., Stacy, S. L., & Kensler, T. W. (2013). Global risk assessment of aflatoxins in maize and peanuts: are regulatory standards adequately protective? Toxicological Sciences, 135, 251–259.

    CAS  PubMed  Article  Google Scholar 

  112. Yirgou, D., & Bradbury, J. F. (1968). Bacterial wilt of enset (Ensete ventricosum) incited by Xanthomonas musacearum sp. nov. Phytopathology, 58, 111–112.

    Google Scholar 

  113. Yirgou, D., & Bradbury, J. F. (1974). A note on wilt of banana caused by the enset wilt organism Xanthomonas musacearum. East African Agricultural and Forestry Journal, 40(1), 111–114.

    Google Scholar 

  114. Zhou, X. P., Liu, Y. L., Calvert, L., Munoz, C., & Otim-Nape, G. W. (1997). Evidence that DNA-A of a geminivirus associated with severe cassava mosaic disease in Uganda has arisen by interspecific recombination. Journal of General Virology, 78, 2101–2111.

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fen D. Beed.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Beed, F.D. Managing the biological environment to promote and sustain crop productivity and quality. Food Sec. 6, 169–186 (2014). https://doi.org/10.1007/s12571-014-0333-9

Download citation

Keywords

  • Crop disease
  • Productivity and quality
  • Aflatoxin
  • Diagnostics
  • Surveillance
  • Ecological interactions