Food Security

, 3:329 | Cite as

Threats to cassava production: known and potential geographic distribution of four key biotic constraints

  • Beatriz Vanessa Herrera Campo
  • Glenn Hyman
  • Anthony Bellotti
Original Paper

Abstract

Insect pests and plant diseases reduce cassava yields substantially, posing a threat to food security throughout the developing world. While agricultural scientists have recognized these threats, few assessments of the geographic distribution of cassava pests and diseases have been made at the global scale. The goal of this study is to make such an evaluation for four key biotic constraints to cassava production in developing countries: whiteflies, cassava green mites, cassava mosaic disease and cassava brown streak disease. Occurrence records were obtained from laboratory and biodiversity databases and from the scientific literature. These records were then used in ecological niche models to predict the potential distribution of cassava pests and diseases. The distribution maps were cross validated by holding back 20% of the occurrence records. Potential distribution maps were developed by combining the results of the best ecological niche models. Hotspots for potential cassava pest and disease outbreaks include the Mato Grosso in Brazil, northern South America, the African rift valley, the southern tip of India and much of Southeast Asia, where all four biotic constraints show high potential suitability. Our work highlights how potential geographical shifts in infestation hotspots for several cassava biotic constraints will require intensified monitoring, evaluation and research to prevent yield losses and ensure food security.

Keywords

Cassava Whitefly Green mite Cassava mosaic disease Cassava brown streak disease Geographic distribution Ecological modeling 

Notes

Acknowledgements

We thank the staffs of the International Center for Tropical Agriculture’s (CIAT) virology and entomology labs for providing data on their disease and pest collections. Clair Hershey and Kris Wyckhuys of CIAT and two anonymous reviewers provided valuable comments on the manuscript. We also thank Ramón Serna of the Universidad del Valle, Colombia, for excellent supervision of a related thesis. Jason Beddow of the University of Minnesota provided ongoing support in our effort to solicit expert opinion about the geographic distribution of pests and diseases. The research was made possible by financial support from the Harvest Choice project (http://harvestchoice.org).

Supplementary material

12571_2011_141_MOESM1_ESM.pdf (5.9 mb)
ESM 1(PDF 6060 kb)

References

  1. Abele, S., Ntawuruhunga, P., Odendo, M., Obiero, H., Twine, E., & Odenya, J. (2005). Effectiveness of breeding and disseminating cassava mosaic virus disease (CMD)-resistant cassava varieties in Western Kenya. Proceedings of the seventh African Crop Science Conference, Kampala, 5–9 December 2005. In J. S. Tenwya, E. Adipla, P. Nampala, G. Tusiome, P. Okori & W. Kyamuhangire (Eds.), (pp. 233–237). Uganda: African Crop Science Conference Proceedings.Google Scholar
  2. Alabi, O. J., Ogbe, F. O., Bandyopadhyay, R., Kumar, P. L., Dixon, A. G. O., Hughes, J. D., et al. (2008). Alternate hosts of African cassava mosaic virus and East African cassava mosaic Cameroon virus in Nigeria. Archives of Virology, 153(9), 1743–1747.PubMedCrossRefGoogle Scholar
  3. Albergaria, N. M. S., & Cividanes, E. F. J. (2002). Exigências Térmicas de Bemisia tabaci (Genn.) Biótipo B (Hemiptera: Aleyrodidae). Neotropical Entomology, 31(3), 359–363.Google Scholar
  4. Alicai, T., Omongo, C. A., Maruthi, M. N., Hillocks, R. J., Baguma, Y., Kawuki, R., et al. (2007). Re-emergence of Cassava brown streak disease in Uganda. Plant Disease, 91(1), 24–29.CrossRefGoogle Scholar
  5. Anderson, R. P., Lew, D., & Peterson, A. T. (2003). Evaluating predictive models of species’ distributions: criteria for selecting optimal models. Ecological Modelling, 162(3), 211–232.CrossRefGoogle Scholar
  6. Anderson, P. K., & Morales, F. J. (2005). Whitefly and whitefly-borne viruses in the tropics: building a knowledge base for global action. In Publicación CIAT. Cali, Colombia: International Center for Tropical Agriculture.Google Scholar
  7. Bellotti, A. C. (2002). Arthropod pest. In R. J. Hillocks, J. M. Thresh, & A. C. Bellotti (Eds.), Cassava: biology, production and utilization (pp. 209–235). Wallingford: CABI Publishing.CrossRefGoogle Scholar
  8. Bellotti, A. C., Arias, B., Vargas, O., & Peña, J. E. (2002). Pérdidas en rendimiento del cultivo de la yuca causadas por insectos y ácaros (Vol. 236). Palmira: CIAT.Google Scholar
  9. Benito de Pando, B., & Peñas de Giles, J. (2007). Aplicación de modelos de distribución de especies a la conservación de la biodiversidad en el sureste de la Península Ibérica. GeoFocus, 7, 100–119.Google Scholar
  10. Breu, M. (2005). Eine starke Wurzel. (2008). Zürich: Eldgenössische Technische Hochschule Zürich, ETH.Google Scholar
  11. Brown, J. K., Frohlich, D. R., & Rosell, C. (1995). The sweetpotato or silverleaf whiteflies: biotypes of B. tabaci or a species complex? Annual Review of Entomology, 40, 511–534.CrossRefGoogle Scholar
  12. Busby, J. R. (1991). Bioclim- a bioclimate analysis and prediction system. Plant Protection Quarterly, 6(1), 8–9.Google Scholar
  13. CABI. (2007). CPC Report. Crop Protetion Compendium.Google Scholar
  14. Cáceres, S. (2004). Moscas blancas del complejo Bemisia tabaci en cultivos hortícolas de Corrientes. Estrategias de manejo. Jornada de Actualización, 9–13.Google Scholar
  15. Calvert, L. A. (1994). The safe movement of cassava germplasm. In I. N. F. C. G. Resources (Ed.), Report of the first meeting of the international network for cassava genetic resources, Cali, Colombia, 18–23 August 1992. International Plant Genetic Resources Institute, (pp. 163–165). Rome: International Crop Network Series.Google Scholar
  16. Carabali, A. (2004). Potencial de resistencia de diferentes genotipos de yuca Manihot esculenta Crantz al “biotipo B” de Mosca blanca Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae). Cali: Universidad del Valle.Google Scholar
  17. Carabali, A., Bellotti, A. C., Montoya-Lerma, J., & Cuellar, M. E. (2005). Adaptation of Bemisia tabaci biotype B (Gennadius) to cassava, Manihot esculenta (Crantz). Crop Protection, 24(7), 643–649.CrossRefGoogle Scholar
  18. Cock, J. H. (1982). Cassava: a basic energy source in the tropics. Science, 218(4574), 755–762.PubMedCrossRefGoogle Scholar
  19. Colvin, J., Omongo, C. A., Maruthi, M. N., Otim-Nape, G. W., & Thresh, J. M. (2004). Dual begomovirus infections and high Bemisia tabaci populations: two factors driving the spread of a cassava mosaic disease pandemic. Plant Pathology, 53(5), 577–584.CrossRefGoogle Scholar
  20. Coulibaly, O., Manyong, V. M., Yaninek, S., Hanna, R., Sanginga, P., Endamana, D., Adesina, A., Toko, M., & Neuenschwander, P. (2004). Economic impact assessment of classical biological control of cassava Greenmite in West Africa. Cotonou – Benin Republic: IITA.Google Scholar
  21. De Barro, P. J., Liu, S. S., Boykin, L. M., & Dinsdale, A. B. (2011). Bemisia tabaci: A statement of species status. Annual Review of Entomology, 56, 1–19.PubMedCrossRefGoogle Scholar
  22. Delalibera, I. & Humber, R. (2004). Neozygites tanajoae sp. nov., a pathogen of the cassava green mite. Mycologia, 96 (5), 1002–1009.Google Scholar
  23. De Souza, M. M. E., De Giovanni, R., Ferreira de Siqueira, M., Sutton, T., Brewer, P., Scachetti Pereira, R., et al. (2009). Open Modeller: a generic approach to species’ potential distribution modelling. Geoinformatica.Google Scholar
  24. Doreste, E. (1982). El Complejo de ácaros tetraníquidos, como plaga importante del cultivo de la yuca. Revista de la Facultad de Agronomía(Maracay), 12(3–4), 249–254.Google Scholar
  25. Drake, J. M., Randin, C., & Guisan, A. (2006). Modelling ecological niches with support vector machines. Journal of Applied Ecology, 43(3), 424–432.CrossRefGoogle Scholar
  26. Dutt, N., Briddon, R. W., & Dasgupta, I. (2005). Identification of a second begomovirus, Sri Lankan cassava mosaic virus, causing cassava mosaic disease in India. Archives of Virology, 150(10), 2101–2108.PubMedCrossRefGoogle Scholar
  27. Elith, J., Graham, C. H., Anderson, R. P., Dudik, M., Ferrier, S., Guisan, A., et al. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2), 129–151.CrossRefGoogle Scholar
  28. Ellsworth, P. C., & Martinez-Carrillo, J. L. (2001). IPM for Bemisia tabaci: a case study from North America. Crop Protection, 20, 853–869.CrossRefGoogle Scholar
  29. EPPO. (2006a). Distribution Maps of Quarantine Pest for Europe: BEMITA. European and Mediterranean Plant Protection Organization. http://eppt.eppo.org/
  30. EPPO. (2006b). Distribution Maps of Quarantine Pest for Europe: BEMIAR. European and Mediterranean Plant Protection Organization. http://eppt.eppo.org/
  31. FAO & IFAD. (2000). The Worl cassava economy. Facts, trends and outlook. Roma: FAO & IFAD.Google Scholar
  32. FAO & IFAD. (2005). Proceedings of the validation forum on the Global Cassava Development Strategy (Vol. 2). Roma: FAO.Google Scholar
  33. FAO (2008). Cassava for food and energy security. In Newsroom (Ed.), (pp. s.p.). Rome: FAO.Google Scholar
  34. Fauquet, C., & Fargette, D. (1990). African cassava mosaic virus: etiology, epidemiology and control. Plant Disease, 74(6), 404–411.CrossRefGoogle Scholar
  35. Fielding, A. H., & Bell, J. F. (1997). A review of methods for assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24(1), 38–49.CrossRefGoogle Scholar
  36. Fondong, V. N., Pita, J. S., Rey, M. R., De Kochko, A., Beachy, R. N., Fauquet, C., et al. (2000). Evidence of synergism between African cassava mosaic virus and a new double-recombinant geminivirus infecting cassava in Cameroon. Journal of General Virology, 81, 287–297.PubMedGoogle Scholar
  37. Guisan, A., & Thuiller, W. (2005). Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8, 993–1009.CrossRefGoogle Scholar
  38. Gutierrez, A. P., Yaninek, J. S., Wermelinger, B., Herren, H. R., & Ellis, C. K. (1988). Analysis of biological control of cassava pests in Africa III. Cassava green mite Mononyhellus tanajoa. Journal of Applied Ecology, 25, 941–950.CrossRefGoogle Scholar
  39. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15), 1965–1978.CrossRefGoogle Scholar
  40. Hillocks, R. J., & Thresh, J. M. (2000) Cassava Mosaic and Cassava Brown Streak Virus diseases in Africa: a comparative guide to symptoms and aetiologies. Roots, 7(1), 1–8.Google Scholar
  41. Hillocks, R. J., & Jennings, D. L. (2003). Cassava brown streak disease: a review of present knowledge and research needs. International Journal of Pest Management, 49(3), 225–234.CrossRefGoogle Scholar
  42. Hirano, K., Budiyanto, E., & Winarni, S. (1993) Biological characteristics and forecasting outbreaks of the whitefly, Bemisia tabaci, a vector of virus diseases in soybean fields ASPAC Food & Fertilizer Technology Center.Google Scholar
  43. IITA & CIAT. (1997). Centers declare victory over the Cassava green mite. CGIAR news, 4(4).Google Scholar
  44. IITA. (2007). Solution found for cassava root-rot devastation in Africa. IITA News, Dar es Salaam, Tanzania.Google Scholar
  45. International Committee on Taxonomy of Viruses, I. (2010). 2010.001aP. (pp. 1–8): ICTV Files and discussions.Google Scholar
  46. Ko, C., Chan, S., & Hu, C. (2005). Survey of Whiteflies and their transmission of plant viruses in Taiwan: FFTC.Google Scholar
  47. Legg, J. P., French, R., Rogan, D., Okao-Okuja, G., & Brown, J. K. (2002). A distinct Bemisia tabaci (Gennadius) (Hemiptera: Sternorrhyncha: Aleyrodidae) genotype cluster is associated with the epidemic of severe cassava mosaic virus disease in Uganda. Molecular Ecology, 11(7), 1219–1229.PubMedCrossRefGoogle Scholar
  48. Legg, J. P., & Hillocks, R. J. (2003). Cassava Brown Streak Virus Disease: past, present and future. Procedings of an international Workshop, Mombasa, Kenya, 27–30 October 2002. (pp. 100). Aylesford, UK: Natural Resources International Limited.Google Scholar
  49. Legg, J. P., Ndjelassili, F., & Okao-Okuja, G. (2004). First report of cassava mosaic disease and cassava mosaic geminiviruses in Gabon. Plant Pathology, 53(2), 232–232.CrossRefGoogle Scholar
  50. Legg, J. P., & Ogwal, S. (1998). Changes in the incidence of African cassava mosaic virus disease the abundance of its whitefly vector along south-north transects in Uganda. Journal of Applied Entomology, 122, 169–178.CrossRefGoogle Scholar
  51. Legg, J. P., & Raya, M. D. (1998). Survey of cassava virus diseases in Tanzania. International Journal of Pest Management, 44(1), 17–23.CrossRefGoogle Scholar
  52. Legg, J., & Thresh, J. (2000). Cassava mosaic virus disease in East A frica: a dynamic disease in a changing environment. Virus Research, 71, 135–149.PubMedCrossRefGoogle Scholar
  53. Lister, R. M. (1959). Mechanical transmission of cassava brown streak virus. Nature, 183(4675), 1588–1589.PubMedCrossRefGoogle Scholar
  54. Liu, S. S., De Barro, P. J., Xu, J., Luan, J. B., Zang, L. S., Ruan, Y. M., et al. (2007). Asymmetric mating interactions drive widespread invasion and displacement in a whitefly. Science, 318(5857), 1769–1772.Google Scholar
  55. Martin, N. A. (1999). Whitefly. Biology, identification and life cycle. Crop and Food Research, 91, 1–8.Google Scholar
  56. Maruthi, M. N., Colvin, J., Seal, S., Gibson, G., & Cooper, J. (2002). Co-adaptation between cassava mosaic geminiviruses and their local vector populations. Virus Research, 86, 71–85.PubMedCrossRefGoogle Scholar
  57. Maruthi, M. N., Hillocks, R. J., Mtunda, K., Raya, M. D., Muhanna, M., Kiozia, H., et al. (2005). Transmission of Cassava brown streak virus by Bemisia tabaci (Gennadius). Journal of Phytopathology, 153(5), 307–312.CrossRefGoogle Scholar
  58. Maruthi, M. N., Seal, S., Colvin, J., Briddon, R. W., & Bull, S. E. (2004). East African cassava mosaic Zanzibar virus—a recombinant begomovirus species with a mild phenotype. Archives of Virology, 149(12), 2365–2377.PubMedCrossRefGoogle Scholar
  59. Mbanzibwa, D. R., Tian, Y. P., Tugume, A. K., Mukasa, S. B., Tairo, F., Kyamanywa, S., et al. (2009). Genetically distinct strains of Cassava brown streak virus in the Lake Victoria basin and the Indian Ocean coastal area of East Africa. Archives of Virology, 154(2), 353–359.PubMedCrossRefGoogle Scholar
  60. Mbanzibwa, D. R., Tian, Y. P., Tugume, A. K., Mukasa, S. B., Tairo, F., Kyamanywa, S., et al. (2011). Simultaneous virus-specific detection of the two cassava brown streak-associated viruses by RT-PCR reveals wide distribution in East Africa, mixed infections, and infections in Manihot glaziovii. Journal of Virological Methods, 171(2), 394–400.PubMedCrossRefGoogle Scholar
  61. Mejía de Tafur, M. S. (2002). Fisiología de la Yuca (Manihot esculenta Crantz). In B. Ospina & H. Ceballos (Eds.), La yuca en el tercer Milenio: sistemas modernos de producción, procesamiento, utilización y comercialización (pp. 34–45). Cali, Colombia: CIAT.Google Scholar
  62. Monger, W. A., Alicai, T., Ndunguru, J., Kinyua, Z. M., Potts, M., Reeder, R. H., et al. (2010). The complete genome sequence of the Tanzanian strain of Cassava brown streak virus and comparison with the Ugandan strain sequence. Archives of Virology, 155(3), 429–433.PubMedCrossRefGoogle Scholar
  63. Monger, W. A., Seal, S., Cotton, S., & Foster, G. D. (2001a). Identification of different isolates of Cassava brown streak virus and development of a diagnostic test. Plant Pathology, 50(6), 768–775.CrossRefGoogle Scholar
  64. Monger, W. A., Seal, S., Isaac, A. M., & Foster, G. D. (2001b). Molecular characterization of the Cassava brown streak virus coat protein. Plant Pathology, 50(4), 527–534.CrossRefGoogle Scholar
  65. Morales, F. J., & Jones, P. G. (2004). The ecology and epidemiology of whitefly-transmitted viruses in Latin America. Virus Research, 100(1), 57–65.PubMedCrossRefGoogle Scholar
  66. Mware, B., Olubayo, F., Narla, R., Songa, J., Amata, R., Kyamanywa, S., et al. (2010). First record of spiraling whitefly in coastal Kenya: emergence, host range, distribution and association with cassava brown streak virus disease. International Journal of Agriculture and Biology, 12(3), 411–415.Google Scholar
  67. Ntawuruhunga, P., & Legg, J. (2007). New spread of Cassava Brown Streak Virus Disease and its implications for the movement of cassava germplasm in the east and central African region. USAID, Crop Crisis Control Project C3P.Google Scholar
  68. Nunes, C., Lucas, E., & Coderre, D. (2005). Diagnóstico sobre el conocimiento y manejo de Bemisia tabaci por los productores del norte nicargüense. Manejo Integrado de plagas y Agroecología, 76, 75–79.Google Scholar
  69. Okao-Okuja, G., Legg, J. P., Traore, L., & Jorge, M. A. (2004). Viruses associated with cassava mosaic disease in Senegal and Guinea Conakry. Journal of Phytopathology, 152(2), 69–76.CrossRefGoogle Scholar
  70. Ortega-Huerta, M. A., & Peterson, A. T. (2008). Modeling ecological niches and predicting geographic distributions: a test of six presence-only methods. Revista Mexicana de Biodiversidad, 79(1), 205–216.Google Scholar
  71. Otim-Nape, G. W., & Thresh, J. M. (2006) The recent epidemic of cassava mosaic virus disease in Uganda. In: B. M. Cooke, D. Gareth Jones, & B. Kaye (Eds), The epidemiology of plant diseases. 2 Ed (p. 576). Netherlands: Springer.Google Scholar
  72. Patil, B. L., & Fauquet, C. M. (2009). Cassava mosaic geminiviruses: actual knowledge and perspectives. Molecular Plant Pathology, 10(5), 685–701.PubMedCrossRefGoogle Scholar
  73. Patil, B. L., Rajasubramaniam, S., Bagchi, C., & Dasgupta, I. (2005). Both Indian cassava mosaic virus and Sri Lankan cassava mosaic virus are found in India and exhibit high variability as assessed by PCR-RFLP. Archives of Virology, 150(2), 389–397.PubMedCrossRefGoogle Scholar
  74. Pearman, P., Guisan, A., Broennimann, O., & Randin, C. (2007). Trends in Ecology & Evolution, 23(3), 149–157.CrossRefGoogle Scholar
  75. Pearson, R. G., & Dawson, T. P. (2003). Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography, 12(5), 361–371.CrossRefGoogle Scholar
  76. Perring, T. (2001). The Bemisia tabaci species complex. Crop Protection, 20, 725–737.CrossRefGoogle Scholar
  77. Peterson, A. (2003). Predicting the geography of species’ invasions via ecological niche modeling. The Quarterly Review of Biology, 78(4), 419–433.PubMedCrossRefGoogle Scholar
  78. Peterson, A. T., Papes, M., & Soberon, J. (2008). Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecological Modelling, 213(1), 63–72.CrossRefGoogle Scholar
  79. Peterson, A., & Vieglais, D. (2001). Predicting species invasions using ecological niche modeling: new approaches from bioinformatics attack a pressing problem. BioScience, 51(5), 363–371.CrossRefGoogle Scholar
  80. Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3–4), 231–259.CrossRefGoogle Scholar
  81. Phillips, S. J., & Dudik, M. (2008). Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31(2), 161–175.CrossRefGoogle Scholar
  82. Pita, J. S., Fondong, V. N., Sangare, A., Otim-Nape, G. W., Ogwal, S., & Fauquet, C. M. (2001). Recombination, pseudorecombination and synergism of geminiviruses are determinant keys to the epidemic of severe cassava mosaic disease in Uganda. Journal of General Virology, 82, 655–665.PubMedGoogle Scholar
  83. Rangel, T. F., Diniz-Filho, F. A., & Bini, L. M. (2006). Towards an integrated computational tool for spatial analysis in macroecology and biogeography. Global ecology and biogeography, 15, 321–327.Google Scholar
  84. Renkow, M., & Byerlee, D. (2010). The impacts of CGIAR research: A review of recent evidence. Food Policy, 35(5), 391–402.CrossRefGoogle Scholar
  85. Salas, J. (2003). Caracterización del vuelo de adultos de mosca blanca Bemisia tabaci. Manejo Integrado de Plagas, 67, 44–50.Google Scholar
  86. Skovard, H., Tomkiewicz, J., Nachman, G., & Münster-Swendsen, M. (1993). The effect of the cassava green mite Mononychellus tanajoa on the growth and yield of cassava Manihot esculenta in a seasonally dry area in Kenya. Experimental & Applied acarolgy, 17, 41–58.Google Scholar
  87. Sseruwagi, P., Maruthi, M. N., Colvin, J., Rey, M. E. C., Brown, J. K., & Legg, J. P. (2006). Colonization of non-cassava plant species by cassava whiteflies (Bemisia tabaci) in Uganda. Entomologia Experimentalis Et Applicata, 119(2), 145–153.CrossRefGoogle Scholar
  88. Sseruwagi, P., Okao-okuja, G., Kalyebi, A., Muyango, S., Aggarwal, V., & Legg, J. (2005). Cassava mosaic geminiviruses associated with cassava mosaic disease in Rwanda. International Journal of Pest Management, 51(1), 17–23.CrossRefGoogle Scholar
  89. Sutherst, R. W., & Bourne, A. S. (2009). Modelling non-equilibrium distributions of invasive species: a tale of two modelling paradigms. Biological Invasions, 11(6), 1231–1237.CrossRefGoogle Scholar
  90. Sutton, T., De Giovanni, R., & Ferreira de Siqueira, M. (2007). Introducing Openmodeller - A fundamental Niche Modelling framework. Osgeojournal, 1.Google Scholar
  91. Titeux, N. (2006). Modelling species distribution when habitat occupancy departs from suitability. Louvain: Université catholique de Louvain.Google Scholar
  92. Trabucco, A., Zomer, R. J., Bossio, D. A., van Straaten, O., & Verchot, L. V. (2008). Climate change mitigation through afforestation/reforestation: A global analysis of hydrologic impacts with four case studies. Agriculture, Ecosystems and Environment, 126(1–2), 81–97.CrossRefGoogle Scholar
  93. Waddington, S. R., Li, X. Y., Dixon, J., Hyman, G., & de Vicente, M. C. (2010). Getting the focus right: production constraints for six major food crops in Asian and African farming systems. Food Security, 2(1), 27–48.CrossRefGoogle Scholar
  94. Winter, S., Koerbler, M., Stein, B., Pietruszka, A., Paape, M., & Butgereitt, A. (2010). Analysis of cassava brown streak viruses reveals the presence of distinct virus species causing cassava brown streak disease in East Africa. Journal of General Virology, 91, 1365–1372.PubMedCrossRefGoogle Scholar
  95. Wisz, M. S., & Guisan, A. (2009). Do pseudo-absence selection strategies influence species distribution models and their predictions? An information-theoretic approach based on simulated data. BMC Ecology, 9(8).Google Scholar
  96. Xu, J., De Barro, P. J., & Liu, S. S. (2010). Reproductive incompatibility among genetic groups of Bemisia tabaci supports the proposition that the whitefly is a cryptic species complex. Bulletin of Entomological Research, 100, 359–366.PubMedCrossRefGoogle Scholar
  97. Yaninek, J. (1988). Continental dispersal of the cassava green mite, an exotic pest in Africa, and implications for biological control. Experimental and Applied Acarology, 4, 211–224.CrossRefGoogle Scholar
  98. Yaninek, J., Moraes, G.J., & Markham, R. (1989) Handbook on the cassava green mite (Mononychellus tanajoa) in Africa: a guide to its biology and procedures for implementing classical biological control Nigeria: IITA, 140 p.Google Scholar
  99. You, L. Z., & Wood, S. (2006). An entropy approach to spatial disaggregation of agricultural production. Agricultural Systems, 90(1–3), 329–347.CrossRefGoogle Scholar
  100. Zhang, P., Vanderschuren, H., Futterer, J., & Gruissem, W. (2005). Resistance to cassava mosaic disease in transgenic cassava expressing antisense RNAs targeting virus replication genes. Plant Biotechnology Journal, 3(4), 385–397.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. & International Society for Plant Pathology 2011

Authors and Affiliations

  • Beatriz Vanessa Herrera Campo
    • 1
  • Glenn Hyman
    • 1
  • Anthony Bellotti
    • 1
  1. 1.International Center for Tropical AgricultureCaliColombia

Personalised recommendations