Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Crops that feed the world 4. Barley: a resilient crop? Strengths and weaknesses in the context of food security

Abstract

Barley is cultivated both in highly productive agricultural systems and also in marginal and subsistence environments. Its distribution is worldwide and is of considerable economic importance for animal feed and alcohol production. The overall importance of barley as a human food is minor but there is much potential for new uses exploiting the health benefits of whole grain and beta-glucans. The barley supply chains are complex and show added value at many stages. Germplasm resources for barley are considerable, with much potential for exploitation of its biodiversity available through the use of recently developed genomic and breeding tools. Consequently, substantial gains in crucial sustainability characteristics should be achievable in the future, together with increased understanding of the physiological basis of many agronomic traits, particularly water and nutrient use efficiency. Barley’s ability to adapt to multiple biotic and abiotic stresses will be crucial to its future exploitation and increased emphasis on these traits in elite germplasm is needed to equip the crop for environmental change. Similarly, resource use efficiency should become a higher priority to ensure the crop’s sustainability in the long-term. Clearly barley is a resilient crop with much potential which can be realised in the future.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Abeledo, L. G., Calderini, D. F., & Slafer, G. A. (2004). Leaf appearance, tillering and their coordination in old and modern barleys from Argentina. Field Crops Research, 86, 23–32.

  2. Akar, T., Avci, M., & Dusunceli, F. (1999). Barley: Post-harvest operations, chapter 31. In Post-harvest Operations Compendium Post-Harvest Management Group, AGSI-FAO-Rome, October.

  3. Akar, T., Francia, E., Tondelli, A., Rizza, F., Stanca, A. M., & Pecchioni, N. (2009). Marker-assisted characterization of frost tolerance in barley (Hordeum vulgare L.). Plant Breeding, 128, 381–386.

  4. Albisu, L. M., Henchion, M., Leat, P., & Blandford, D. (2010). Improving agri-food chain relationships in Europe: The role of public policy. In C. Fischer & M. Hartmann (Eds.), Agri-food chain relationships (pp. 250–266). Oxford: CAB International.

  5. Allaby, R. G., & Brown, T. A. (2003). AFLP data and the origins of domesticated crops. Genome, 46, 448–453.

  6. Allison, M. J. (1986). Relationships between milling energy and hot water extract values for malts from some modern barleys and their parental cultivars. Journal of the Institute of Brewing, 92, 604–607.

  7. Allison, M. J., Cowe, I. A., Borzucki, R., Bruce, F. M., & McHale, R. (1979). Milling energy of barley. Journal of the Institute of Brewing, 85, 262–265.

  8. Amri, A., Ouammou, L., & Nassif, F. (2005). Barley-based food in Southern Morocco. In S. Grando & H. Gomez Macpherson (Eds.), Food barley: Importance, uses and local knowledge (pp. 22–28). Syria: ICARDA.

  9. Andersson, A. A. M., Armo, E., Grangeon, E., Fredriksson, H., Andersson, R., & Aman, P. (2004). Molecular weight and structure of (1/3) (1/4)-b-D-glucans in dough and bread made from hull-less barley milling fractions. Journal of Cereal Science, 40, 195–204.

  10. Andersson, A. A. M., Lampi, A.-M., Nystrom, L., Piironen, V., Li, L., Ward, J. L., et al. (2008). Phytochemical and dietary fibre components in barley varieties in the HEALTHGRAIN diversity Screen. Journal of Agricultural and Food Chemistry, 56, 9767–9776.

  11. Angus, J. F., Jones, R., & Wilson, J. H. (1972). A comparison of barley cultivars with different leaf inclinations. Australian Journal of Agricultural Research, 23, 945–957.

  12. Anjos, J. R. N., & Charchar, M. J. A. (2000). Natural infection of barley by Pyricularia grisea in Brazil. Fitopatologia Brasileira, 25, 205.

  13. Anyia, A. O., Slaski, J. J., Nyachiro, J. M., Archambault, D. J., & Juskiw, P. (2007). Relationship of carbon isotope discrimination to water use efficiency and productivity of barley under field and greenhouse conditions. Journal of Agronomy and Crop Science, 193, 313–323.

  14. Araus, J. L., Slafer, G. A., Reynolds, M. P., & Royo, C. (2002). Plant breeding and drought in C3 cereals: what should we breed for? Annals of Botany, 89, 925–940.

  15. Arisnabarreta, S., & Miralles, D. J. (2008). Critical period for grain number establishment of near isogenic lines of two and six-rowed barley. Field Crops Research, 107, 196–202.

  16. Arisnabarreta, S., & Miralles, D. J. (2010). Nitrogen and radiation effects during the active spike-growth phase on floret development and biomass partitioning in 2- and 6-rowed barley isolines. Crop & Pasture Science, 61, 578–587.

  17. Badr, A., Müller, K. J., Schäfer-Pregl, R., El Rabey, H., Evgen, S., Ibrahim, H. H., et al. (2000). On the origin and domestication history of barley (Hordeum vulgare). Molecular Biology and Evolution, 17, 499–510.

  18. Bamforth, C. W., & Barclay, A. H. P. (1993). Malting technology and the uses of malt. In A. W. MacGregor & R. S. Bhatty (Eds.), Barley: Chemistry and technology (pp. 297–354). St Paul: Am Assoc of Cereal Chem.

  19. Barker, S. J. (1998). The temporary breakdown of mlo-resistance in barley to powdery mildew. D.Phil Thesis. UK: University of Oxford.

  20. Bartlett, J. G., Alves, S. C., Smedley, M., Snape, J. W., & Harwood, W. A. (2008). High-throughput Agrobacterium-mediated barley transformation. Plant Methods, 4, 22.

  21. Bingham, I. J., & Newton, A. C. (2009). Crop tolerance of foliar pathogens: possible mechanisms and potential for exploitation. In D. Walters (Ed.), Disease control in crops: Biological and environmentally friendly approaches (pp. 142–161). Wiley-Blackwell.

  22. Bingham, I. J., & Topp, C. F. E. (2009). Potential contribution of selected canopy traits to the tolerance of foliar disease by spring barley. Plant Pathology, 58, 1010–1020.

  23. Bingham, I. J., Blake, J., Foulkes, M. J., & Spink, J. (2007). Is barley yield in the UK sink limited? I. Post-anthesis radiation interception, radiation-use efficiency and source-sink balance. Field Crops Research, 101, 198–211.

  24. Bingham, I. J., Walters, D. R., Foulkes, M. J., & Paveley, N. D. (2009). Crop traits and the tolerance of wheat and barley to foliar disease. The Annals of Applied Biology, 154, 159–173.

  25. Bingham, I. J., Karley, A. J., White, P. J., & Thomas, W. T. B. (2010). Analysis of improvements in nitrogen use efficiency associated with 75 years of barley breeding (pp. 51–52) Agro 2010. Proceedings of the XI European Society for Agronomy Congress, Montpellier, France, 29 Aug-3 Sept 2010.

  26. Blum, A. (2009). Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Research, 112, 119–123.

  27. Borràs, G., Romagosa, I., van Eeuwijk, F., & Slafer, G. (2009). Genetic variability in duration of pre-heading phases and relationships with leaf appearance and tillering dynamics in a barley population. Field Crops Research, 113, 95–104.

  28. Bort, J., Araus, J. L., Hazzam, H., Grando, S., & Ceccarelli, S. (1998). Relationshps between early vigour, grain yield, leaf structure and stable isotope composition in field grown barley. Plant Physiology & Biochemistry, 36, 889–897.

  29. Bowman, J. G. P., Blake, T. K., Surber, L. M. M., Habernicht, T. K., & Daniels, J. T. (1996). Genetic factors controlling digestibility of barley for ruminants. Proceedings of the Western Section, American Society of Animal Science, 47, 257–260.

  30. Bragard, C., Singer, E., Alizadeh, A., Vauterin, L., Maraite, H., & Swings, J. (1997). Xanthomonas translucens from small grains: diversity and phytopathological relevance. Phytopathology, 87, 1111–1117.

  31. Braks, P., & Leijh, T. (2005). The global malt industry: A changing industry structure, driven by emerging beer markets, Rabobank. www.coceral.com/…/malt%20complex%20intro_2005_tcm25-11570.pdf.

  32. Broadley, M. R., Willey, N. J., Wilkins, J. C., Baker, A. J. M., Mead, A., & White, P. J. (2001). Phylogenetic variation in heavy metal accumulation in angiosperms. The New Phytologist, 152, 9–27.

  33. Broadley, M. R., White, P. J., Hammond, J. P., Zelko, I., & Lux, A. (2007). Zinc in plants. The New Phytologist, 173, 677–702.

  34. Browder, L. E., & Eversmeyer, M. G. (1986). Interactions of temperature and time with some Puccinia recondita: Triticum corresponding gene pairs. Phytopathology, 76, 1286–1288.

  35. Brueggeman, R., Rostocks, N., Kudrna, D., Kilian, A., Han, F., Chen, J., et al. (2002). The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proceedings of the National Academy of Sciences of the United States of America, 99, 9328–9333.

  36. Burton, R. A., Wilson, S. M., Hrmova, M., Harvey, A. J., Shirley, N. J., Medhurst, A., et al. (2009). Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1,3;1,4)-ß-D-glucans. Science, 31, 1940–1942.

  37. Capettini, F. (2005). Barley in Latin America. In S. Grando & H. Gomez Macpherson (Eds.), Food barley: Importance, uses and local knowledge (pp. 121–126). Syria: ICARDA.

  38. Cattivelli, L., Baldi, P., Crosatti, C., Di Fonzo, N., Faccioli, P., Grossi, M., et al. (2002). Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae. Plant Molecular Biology, 48, 649–665.

  39. Cavallero, A., Viva, M., & Stanca, A. M. (2000). Improvement of spaghetti and bread with β-glucan and tocols from naked barley flour. In Proceedings of the Eighth International Barley Genetics Symposium, Adelaide (vol 2, pp. 282–285). Australia: University of Adelaide.

  40. Ceccarelli, S., Grando, S., & van Leur, J. A. G. (1987). Genetic diversity in barley landraces from Syria and Jordan. Euphytica, 36, 389–405.

  41. Ceccarelli, S., Grando, S., & van Leur, I. A. G. (1995). Barley landraces offer new breeding options for stress environments. Diversity, 11, 112–113.

  42. Ceccarelli, S., Grando, S., Maatougui, M., Michael, M., Slash, M., Haghparast, R., et al. (2010). Plant Breeding and climate change. Journal of Agricultural Science, 148, 627–637.

  43. Chakraborty, S., & Newton, A. C. (2011). Climate change, plant diseases and food security, an overview. Plant Pathology, 60, 2–14.

  44. Chakraborty, S., Luck, J., Hollaway, G., Fitzgerald, G., & White, N. (2011). Rust-proofing wheat for a changing climate. Euphytica. doi:10.1007/s10681-010-0324-7.

  45. Chalmers, J., Jefferies, J. P., & Langridge, P. (2001). Comparison of RFLP and AFLP marker systems for assessing genetic diversity in Australian barley varieties and breeding lines. Plant genotyping: the DNA fingerprinting of plants (pp. 161–178).

  46. Chen, F., Dong, J., Wang, F., Wu, F., Zhang, G., Li, G., et al. (2007). Identification of barley genotypes with low grain Cd accumulation and its interaction with four microelements. Chemosphere, 67, 2082–2088.

  47. Chen, F., Wang, F., Zhang, G., & Wu, F. (2008). Identification of barley varieties tolerant to cadmium toxicity. Biological Trace Element Research, 121, 171–179.

  48. Chen, G., Pourkheirandish, M., Sameri, M., Wang, N., Nair, S., Shi, Y., et al. (2009). Genetic targeting of candidate genes for drought sensitive gene eibi1 of wild barley (Hordeum spontaneum). Breeding Science, 59, 637–644.

  49. Cheplick, G. P., & Faeth, S. (2009). Ecology and evolution of the grass-endophyte symbiosis. Oxford Scolarship Online. doi:10.1093/acprof:oso/9780195308082.003.0004.

  50. Chesson, A. (1987). Supplementary enzymes to improve the utilisation of pig and poultry diets. In W. Haresign & D. J. A. Cole (Eds.), Recent advances in animal nutrition (pp. 71–89). London: Butterworths.

  51. Chesson, A. (1991). Effects of supplementary enzymes in barley diets. In J.-L. Molina-Cano & J. Brufau (Eds.), New trends in barley quality for malting and feeding. Options mediterraneennes, serie A, 20 (pp. 55–62). Zaragoza: CIHEAM.

  52. Chin, K. M., & Wolfe, M. S. (1984). Selection on Erysiphe graminis in pure and mixed stands of barley. Plant Pathology, 33, 535–545.

  53. Christiansen, M. N., & Lewis, C. F. (1982). Breeding plants for less favorable environments. New York: Wiley.

  54. Close, T. J., Bhat, P. R., Lonardi, S., Wu, Y., Rostoks, N., Ramsay, L., et al. (2009). Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics, 10, 582.

  55. Cockram, J., White, J., Zuluaga, D., Comadran, J., Macaulay, M., Liu, Z., et al. (2010). Genome-wide association mapping of morphological traits to candidate gene resolution in the un-sequenced barley genome. Proceedings of the National Academy of Sciences of the United States of America, 107, 21611–21616.

  56. Collard, B. C. Y., & Mackill, D. J. (2008). Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philosophical Transactions of the Royal Society of London. B, 363, 557–572.

  57. Collins, H. M., Swanston, J. S., Rossnagel, B. G., & Logue, S. J. (2004). An investigation of the relative rates of protein and carbohydrate modification of a number of international malting varieties, grown in three countries. In Proceedings of the Ninth International Barley Genetics Symposium, Brno, Poster Presentations (pp. 404–409), on CD-ROM.

  58. Comadran, J., Russell, J. R., van Eeuwijk, F. A., Ceccarelli, S., Grando, S., Baum, M., et al. (2007). Mapping adaptation of barley to droughted environments. Euphytica, 161, 35–45.

  59. Comadran, J., Ramsay, L., MacKenzie, K., Hayes, P., Close, T. J., Muehlbauer, G., et al. (2010). Patterns of polymorphism and linkage disequilibrium in cultivated barley. Theoretical and Applied Genetics, 122, 523–531.

  60. Condon, A. G., Richards, R. A., Farqhuar, G. D., & Rebetzke, G. J. (2002). Improving intrinsic water-use efficiency and crop yield. Crop Science, 42, 122–131.

  61. Cossani, C. M., Savin, R., & Slafer, G. A. (2007). Contrasting performance of barley and wheat in a wide range of conditions in Mediterranean Catalonia (Spain). The Annals of Applied Biology, 151, 167–173.

  62. Cossani, C. M., Slafer, G. A., & Savin, R. (2009). Yield and biomass in wheat and barley under a range of conditions in a Mediterranean site. Field Crops Research, 112, 205–213.

  63. Davis, K., Evans, A., & Oxley, S. (2007). Impact of climate change in Scotland on crop pests, weeds and diseases. Technical Note TN605, SAC, Edinburgh.

  64. Delhaize, E., Ryan, P. R., Hebb, D. M., Yamamoto, Y., Sasaki, T., & Matsumoto, H. (2004). Engineering high-level aluminium tolerance in barley with the ALMT1 gene. Proceedings of the National Academy of Sciences of the United States of America, 101, 15249–15254.

  65. Delhaize, E., Gruber, B. D., & Ryan, P. R. (2007). The roles of organic anion permeases in aluminium resistance and mineral nutrition. FEBS Letters, 581, 2255–2262.

  66. Devienne-Barret, F., Justes, E., Machet, J. M., & Mary, B. (2000). Integrated control of nitrate uptake by crop growth rate and soil nitrate availability under field conditions. Annals of Botany, 86, 995–1005.

  67. Diab, A. A., Teulat-Merah, B., This, D., Ozturk, N. Z., Benscher, D., & Sorrells, M. E. (2004). Identification of drought-inducible genes and differentially expressed sequence tags in barley. Theoretical and Applied Genetics, 109, 1417–1425.

  68. Diaz-Perales, A., Linacero, R., & Vazquez, A. M. (2003). Analysis of genetic relationships among 22 European barley varieties based on two PCR markers. Euphytica, 129, 53–60.

  69. Distelfeld, A., Li, C., & Dubcovsky, J. (2009). Regulation of flowering in temperate cereals. Current Opinion in Plant Biology, 12, 178–184.

  70. Doll, H. (1981). Genetic possibilities for improving the nutritional quality of barley protein. In Proceedings of the Fourth International Barley Genetics Symposium, Edinburgh (pp. 257–262). Edinburgh: Edinburgh University Press.

  71. Doll H, Koie B (1978) Influence of the high-lysine gene from barley mutant 1508 on grain, carbohydrate and protein yield. In: Seed Protein Improvement by Nuclear Techniques, pp 107–114, IAEA, Vienna

  72. Drinks International (2009). Millionaires (2009) [Online]. Available at: http://www.euromonitor.com/pdf/Million09.pdf.

  73. Duffus, J. H. (2002). “Heavy metals” – a meaningless term? Pure and Applied Chemistry, 74, 793–807.

  74. Dunbabin, V., Diggle, A., & Rengel, Z. (2003). Is there an optimal root architecture for nitrate capture in leaching environments? Plant, Cell & Environment, 26, 835–844.

  75. Dyck, P. L., & Johnson, R. (1983). Temperature sensitivity of genes for resistance in wheat to Puccinia recondita. Canadian Journal of Plant Pathology, 5, 229–234.

  76. Edney, M. J. (1996). Barley. In R. J. Henry & P. S. Kettlewell (Eds.), Cereal grain quality (pp. 113–151). London: Chapman and Hall.

  77. Ellis, R. P., Forster, B. P., Robinson, D., Handley, L. L., Gordon, D. C., Russell, J. R., et al. (2000). Wild barley: a source of genes for crop improvement in the 21st century? Journal of Experimental Botany, 51, 9–17.

  78. Emebiri, L. C., Michael, P., & Moody, D. B. (2009). Enhanced tolerance to boron toxicity in two-rowed barley by marker-assisted introgression of favourable alleles derived from Sahara 3771. Plant and Soil, 314, 77–85.

  79. Euromalt (2008). Euromalt: Committee of the Malting Industry of the European Union. http://www.coceral.com/cms/dokumente/10012002_238410/4120d7fb/finalEuromalt%20leaflet%20Nov%2008%20%282%29.doc.

  80. Euronext (2010). Commodity derivatives: Malting Barley futures and options summary. NYSE Liffe. Available online at: http://www.euronext.com/fic/000/056/467/564670.pdf.

  81. Fageria, N. K. (2009). The use of nutrients in crop plants. Boca Raton: CRC.

  82. Fageria, N. K., Baligar, V. C., & Jones, C. A. (2011). Growth and mineral nutrition of field crops (3rd ed.). Boca Raton: CRC.

  83. FAO (2010). Food and Agriculture Organization of the United Nations, Land Resources. http://www.fao.org/nr/land/databasesinformation-systems/en/ [last accessed 26th July 2010].

  84. Fischbeck, G. (2002). Contribution of barley to agriculture: a brief overview. In G. A. Slafer, J.-L. Molina-Cano, R. Savin, J.-L. Araus, & I. Romagosa (Eds.), Barley science: Recent advances from molecular biology to agronomy of yield and quality (pp. 1–14). Binghamton: Food Products.

  85. Fleury, D., Jefferies, S., Kuchel, H., & Langridge, P. (2010). Genetic and genomic tools to improve drought tolerance in wheat. Journal of Experimental Botany, 61, 3211–3222.

  86. Forster, B. P., Ellis, R. P., Thomas, W. T. B., Newton, A. C., Tuberosa, R., This, D., et al. (2000). The development and application of molecular markers for abiotic stress tolerance in barley. Journal of Experimental Botany, 51, 18–27.

  87. Forster, B. P., Ellis, R. P., Moir, J., Talamè, V., Sanguineti, M. C., Tuberosa, R., et al. (2004). Genotype and phenotype associations with drought tolerance in barley tested in North Africa. The Annals of Applied Biology, 144, 157–168.

  88. Forster, B. P., Thomas, W. T. B., & Chloupek, O. (2005). Genetic controls of barley root systems and their associations with plant performance. Aspects Applied Biology, 73, 199–204.

  89. Francia, E., Rizza, F., Cattivelli, L., Stanca, A. M., Galiba, G., Toth, B., et al. (2004). Two loci on chromosome 5H determine low-temperature tolerance in a ‘Nure’ (winter) x ‘Tremois’ (spring) barley map. Theoretical and Applied Genetics, 108, 670–680.

  90. Francia, E., Barabaschi, D., Tondelli, A., Laidó, G., Rizza, F., Stanca, A. M., et al. (2007). Fine mapping of a HvCBF gene cluster at the frost resistance locus Fr-H2 in barley. Theoretical and Applied Genetics, 115, 1083–1091.

  91. Fricano, A., Rizza, F., Faccioli, P., Pagani, D., Pavan, P., Stella, A., et al. (2009). Genetic variants of HvCbf14 are statistically associated with frost tolerance in a European germplasm collection of Hordeum vulgare. Theoretical and Applied Genetics, 119, 1335–1348.

  92. Friedt, W., Werner, K., & Ordon, F. (2000). Genetic progress as reflected in highly successful and productive modern barley cultivars. In Proceedings of the Eighth International Barley Genetics Symposium, Adelaide (vol 1, pp. 271–279). Australia: University of Adelaide.

  93. Gahoonia, T. S., & Nielsen, N. E. (1997). Variation in root hairs of barley cultivars doubled soil phosphorus uptake. Euphytica, 98, 177–182.

  94. Gahoonia, T. S., & Nielsen, N. E. (2003). Phosphorus (P) uptake and growth of a root hairless barley mutant (bald root barley, brb) and wild type in low- and high-P soils. Plant, Cell & Environment, 26, 1759–1766.

  95. Gahoonia, T. S., & Nielsen, N. E. (2004). Barley genotypes with long root hairs sustain high grain yields in low-P field. Plant Soil, 262, 55–62.

  96. Galiba, G., Vágújfalvi, A., Li, C., Soltész, A., & Dubcovsky, J. (2009). Regulatory genes involved in the determination of frost tolerance in temperate cereals. Plant Science, 176, 12–19.

  97. Garthwaite, A. J., von Bothmer, R., & Colmer, T. D. (2005). Salt tolerance in wild Hordeum species is associated with restricted entry of Na+ and Cl- into the shoots. Journal of Experimental Botany, 56, 2365–2378.

  98. George, T. S., Brown, L. K., Newton, A. C., Hallett, P. D., Sun, B. H., Thomas, W. T. B., et al. (2010). Impact of soil tillage on the robustness of the genetic component of variation in phosphorus (P) use efficiency in barley (Hordeum vulgare L.). Plant Soil, 339, 113–123.

  99. Global strategy for the ex situ conservation and use of barley germplasm (2008). Global crop diversity trust. Available online: http://www.croptrust.org/documents/web/Barley_Strategy_FINAL_27Oct08.pdf.

  100. Gohl, B., Alden, S., Elwinger, K., & Thomke, S. (1978). Influence of β-glucanase on feeding value of barley for poultry and moisture content of excreta. British Poultry Science, 19, 41–47.

  101. Gong, X., Wescott, S., Li, C. D., Yan, G. J., Lance, R., & Sun, D. F. (2009). Strong correlation of wild barley (Hordeum spontaneum) population structure with temperature and precipitation variation. Molecular Ecology, 18, 1523–1536.

  102. Graham, R., Davies, W., Sparrow, D., & Ascher, J. (1983). Tolerance of barley and other cereals to manganese-deficient calcareous soils of South Australia. In B. C. Loughman (Ed.), Genetic aspects of plant nutrition (pp. 339–344). The Hague: Martinus Nijhoff.

  103. Grando, S., & Gomez Macpherson, H. (2005). Preface. In S. Grando & H. Gomez Macpherson (Eds.), Food barley: Importance, uses and local knowledge (pp. ix–x). Syria: ICARDA.

  104. Graner, A., Ludwig, W. F., & Melchinger, A. E. (1994). Relationships among European barley germplasm. 2. Comparison of RFLP and pedigree data. Crop Science, 34, 1199–1205.

  105. Gregory, P. J., Johnson, S. N., Newton, A. C., & Ingram, J. S. I. (2009). Integrating pests and pathogens into the climate change/food security debate. Journal of Experimental Botany, 60, 2827–2838.

  106. Hadado, T., Rau, D., & Bitocchi, E. (2010). Adaptation and diversity along an altitudinal gradient in Ethiopian barley (Hordeum vulgare L.) landraces revealed by molecular analysis. BMC Plant Biology, 10, 121.

  107. Harder, D. E., Rohringer, R., Samborski, D. J., Rimmer, S. R., Kim, W. K., & Chong, J. (1979). Electron-microscopy of susceptible and resistant near-isogenic (sr6-Sr6) lines of wheat infected by Puccinia graminis tritici. II. Expression of incompatibility in mesophyll and epidermal cells and the effect of temperature on host-parasite interactions in these cells. Canadian Journal of Botany, 57, 2617–2625.

  108. Hargreaves, C. E., Gregory, P. J., & Bengough, A. G. (2009). Measuring root traits in barley (Hordeum vulgare ssp vulgare and ssp spontaneum) seedlings using gel chambers, soil sacs and X-ray microtomography. Plant Soil, 316, 285–297.

  109. Harrington, R., Bale, J. S., & Tatchell, G. M. (1995). Aphids in a changing climate. In R. Harrington & N. E. Stork (Eds.), Insects in a changing environment (pp. 126–155). London: Academic.

  110. Harrington, R., Clark, S. J., Welham, S. J., Verrier, P. J., Denholm, C. H., Hulle, M., et al. (2007). Environmental change and the phenology of European aphids. Global Change Biology, 13, 1550–1564.

  111. Hauser, F., & Horie, T. (2010). A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress. Plant, Cell & Environment, 33, 552–565.

  112. He, P., Osaki, M., Takebe, M., Shinano, T., & Wasaki, J. (2005). Endogenous hormones and expression of senescence-related genes in different senescent types of maize. Journal of Experimental Botany, 56, 1117–1128.

  113. Hebbern, C. A., Pedas, P., Schjoerring, J. K., Knudsen, L., & Husted, S. (2005). Genotypic differences in manganese efficiency: field experiments with winter barley (Hordeum vulgare L.). Plant Soil, 272, 233–244.

  114. Heffner, E. L., Sorrells, M. E., & Jannink, J.-L. (2009). Genomic selection for crop improvement. Crop Science, 49, 1–11.

  115. Heiser, I., Sachs, E., & Liebermann, B. (2003). Photodynamic oxygen activation by rubellin D, a phytotoxin produced by Ramularia collo-cygni (Sutton et Waller). Physiological and Molecular Plant Pathology, 62, 29–36.

  116. HGCA (2006). The barley growth guide. Available online: http://www.hgca.com/document.aspx?fn=load&media_id=2448&publicationId=2846.

  117. HGCA (2010). Malting barley - quality criteria and tests. Available online: http://www.hgca.com/document.aspx?fn=load&media_id=783&publicationId=1261.

  118. Hockett, E. A., & White, L. M. (1981). Simultaneous breeding for feed and malting quality. In Proceedings of the Fourth International Barley Genetics Symposium, Edinburgh (pp. 234–241). Edinburgh: Edinburgh University Press.

  119. Hodge, A. (2004). The plastic plant: root responses to heterogenous supplies of nutrients. The New Phytologist, 162, 9–24.

  120. Hodge, A., Robinson, D., Griffiths, B. S., & Fitter, A. H. (1999). Why plants bother: root proliferation results in increased nitrogen capture from an organic patch when two grasses compete. Plant, Cell & Environment, 22, 811–820.

  121. Holgado, R., Andersson, S., & Magnusson, C. (2006). Management of cereal cyst nematodes, Heterodera spp., in Norway. Communications in Agricultural and Applied Biological Sciences, 71, 639–645.

  122. Huang, S., Spielmeyer, W., Lagudah, E. S., & Munns, R. (2008). Comparative mapping of HKT genes in wheat, barley, and rice, key determinants of Na+ transport, and salt tolerance. Journal of Experimental Botany, 59, 927–937.

  123. Huber, L., & Gillespie, T. J. (1992). Modeling leaf wetness in relation to plant disease epidemiology. Annual Review of Phytopathology, 30, 553–577.

  124. Hübner, S., Höffken, M., Oren, E., Haseneyer, G., Stein, N., Graner, A., et al. (2009). Strong correlation of wild barley (Hordeum spontaneum) population structure with temperature and precipitation variation. Molecular Ecology, 18, 1523–1536.

  125. Impact. (2009). Impact magazine exclusive: World’s top 100 spirit brands. New York: M Shanken Communications, Inc.. 1 & 15 February issues.

  126. Ingversen, J., Koie, B., & Doll, H. (1973). Induced seed protein mutant of barley. Experientia, 29, 1151–1152.

  127. Inostroza, L., del Pozo, A., Matus, I., Castillo, D., Hayes, P., Machado, S., et al. (2009). Association mapping of plant height, yield, and yield stability in recombinant chromosome substitution lines (RCSLs) using Hordeum vulgare subsp. spontaneum as a source of donor alleles in a Hordeum vulgare subsp. vulgare background. Molecular Breeding, 23, 365–376.

  128. Izydorczyk, M., Hussain, A., & MacGregor, A. W. (2001). Effect of barley and barley components on rheological properties of wheat dough. Journal of Cereal Science, 34, 251–260.

  129. Jarman, R. J. (1996). Bere barley – a living link with the 8th century. Plant Varieties & Seeds, 9, 191.

  130. Jarosch, B., Kogel, K.-H., & Schaffrath, U. (1999). The ambivalence of the barley Mlo locus: mutations conferring resistance against powdery mildew (Blumeria graminis f. sp. hordei) enhance susceptibility to the rice blast fungus Magnaporthe grisea. Molecular Plant-Microbe Interactions, 12, 508–514.

  131. Jefferies, S. P., King, B. J., Barr, R., Warner, P., Logue, S. J., & Langridge, P. (2003). Marker-assisted backcross introgression of the Yd2 gene conferring resistance to barley yellow dwarf virus in barley. Plant Breeding, 122, 52–56.

  132. Jin, Y., Steffenson, B. J., & Miller, J. D. (1994). Inheritance of resistance to pathotypes QCC and MCC of Puccinia graminis f. sp. tritici in barley line Q21861 and temperature effects on the expression of resistance. Phytopathology, 84, 452–455.

  133. Jokinen, R., & Tahtinen, H. (1988). Sensitivity to copper deficiency and response to copper fertilization of barley and oat varieties. Annales Agriculturae Fenniae, 27, 45–53.

  134. Juknys, R., Račiatė, M., Vitkauskiatė, G., & Venclovienė, J. (2009). The effect of heavy metals on spring barley (Hordeum vulgare L.). Zemdirbyste – Agriculture, 96, 111–124.

  135. Karaman, M. R., Sahin, S., Kandemir, N., Çoban, S., & Sert, S. (2007). Characterization of some barley cultivars (H. vulgare spp.) for their response to iron deficiency on calcareous soil. Asian Journal of Chemistry, 19, 3007–3014.

  136. Karaman, M. R., Kandemir, N., Sahin, S., & Çoban, S. (2010). Strategies to select genetic variations of barley (Hordeum vulgare L.) cultivars for agronomic zinc utilization characters. Journal of Food, Agriculture and Environment, 8, 395–399.

  137. Kijne, J. W., Barker, R., & Molden, D. J. (Eds.). (2003). Water productivity in agriculture: Limits and opportunities for improvement (p. 332). UK: CABI.

  138. King, J., Gay, A., Sylvester-Bradley, R., Bingham, I., Foulkes, J., Gregory, P., & Robinson, D. (2003). Modelling cereal root systems for water and nitrogen capture: Towards an economic optimum. Annals of Botany, 91, 383–390.

  139. Kislev, M. E., Nadel, D., & Carmi, I. (1992). Grain and fruit diet 19.000 years old at Ohalo II, Sea of Galilee, Israel. Review of Palaeobotany and Palynology, 73, 161–166.

  140. Komatsuda, T., Pourkheirandish, M., He, C., Azhaguvel, P., Kanamori, H., Perovic, D., et al. (2007). Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proceedings of the National Academy of Sciences of the United States of America, 104, 1424–1429.

  141. Kongprakhon, P., Alfonso Cuesta-Marcos, A., Hayes, P. M., Richardson, K. L., Sirithunya, P., Sato, K., et al. (2009). Validation of rice blast resistance genes in barley using a QTL mapping population and near-isolines. Breeding Science, 59, 341–349.

  142. Kosová, K., Prášil, I. T., & Vítámvás, P. (2010). Role of dehydrins in plant stress response. In M. Pessarakli (Ed.), Handbook of plant and crop stress (3rd ed., pp. 239–285). Boca Raton: CRC, Taylor & Francis.

  143. Kurppa, S. (1989). Susceptibility and reaction of wheat and barley varieties grown in Finland to damage by the orange wheat blossom midge Sitodiplosis mosellana (Gehin). Annales Agriculturae Fenniae, 28, 371–383.

  144. Ladha, J. K., Pathak, H., Krupnik, T. J., Six, J., & van Kessel, C. (2005). Efficiency of fertilizer nitrogen in cereal production: retrospects and prospects. Advances in Agronomy, 87, 85–156.

  145. Lee, P. A., & Kay, R. M. (2003). The effect of commercially formulated, reduced crude protein diets, formulated to 11 apparent ileal-digestible essential amino acids, on nitrogen retention by growing and finishing boars. Livestock Poduction Science, 81, 89–98.

  146. Lein, A. (1964). Breeding for malting quality. In Proceedings of the First International Barley Genetics Symposium, Wageningen (pp. 310–324). The Netherlands: Centre for Agricultural Publications and Documentation.

  147. Lewis, J. (2001). Managing CCN with high value cereals. Australia: South Australia Research and Development Institute Research Services.

  148. Liao, H., Yan, X., Rubio, G., Beebe, S. E., Blair, M. W., & Lynch, J. P. (2004). Genetic mapping of basal root gravitropism and phosphorus acquisition efficiency in common bean. Functional Plant Biology, 31, 959–970.

  149. Liao, M., Fillery, I. R. P., & Palta, J. A. (2004). Early vigorous growth is a major factor influencing nitrogen uptake in wheat. Functional Plant Biology, 31, 121–129.

  150. Lima, M. I. P. M., & Minella, E. (2003). Occurrence of head blast in barley. Fitopatologia Brasileira, 28, 207.

  151. Lima, M. I. P. M., Minella, E., & Vilasboas, F. S. (2007). Occurrence of rice blast in barley leaves in Rio Grande do Sul, Brazil. Fitopatologia Brasileira, 32, 167.

  152. Lombnæs, P., & Singh, B. R. (2003). Varietal tolerance to zinc deficiency in wheat and barley grown in chelator-buffered nutrient solution and its effect on uptake of Cu, Fe and Mn. Journal of Plant Nutrition and Soil Science, 166, 76–83.

  153. Lonergan, P. F., Pallotta, M. A., Lorimer, M., Paull, J. G., Barker, S. J., & Graham, R. D. (2009). Multiple genetic loci for zinc uptake and distribution in barley (Hordeum vulgare). The New Phytologist, 184, 168–179.

  154. Lundqvist, U., Frankowiak, J. D., & Konishi, T. (1997). Special issue. Barley genetic newsletter 26 (http://wheat.pw.usda.gov/ggpages/bgn/26/).

  155. Ma, J. F., Ryan, P. R., & Delhaize, E. (2001). Aluminium tolerance in plants and the complexing role of organic acids. Trends in Plant Science, 6, 273–278.

  156. Ma, J. F., Nagao, S., Sato, K., Ito, H., Furukawa, J., & Takeda, K. (2004). Molecular mapping of a gene responsible for Al-activated secretion of citrate in barley. Journal of Experimental Botany, 55, 1335–1341.

  157. MacLeod, A. M. (1977). The impact of science on malting technology. In Proceedings of the 16th European Brewery Convention Congress, Amsterdam (pp. 63–75). Oxford: Oxford University Press.

  158. Maestri, E., Malcevschi, A., Massari, A., & Marmiroli, N. (2002). Genomic analysis of cultivated barley (Hordeum vulgare) using sequence-tagged molecular markers. Estimates of divergence based on RFLP and PCR markers derived from stress-responsive genes, and simple-sequence repeats (SSRs). Molecular Genetics and Genomics, 267, 186–201.

  159. Maga, J. A. (1982). Phytate: its chemistry occurrence, food interactions, nutritional significance and methods of analysis. Journal of Agricultural and Food Chemistry, 30, 1–9.

  160. MAGB (2010). Controlling the intake of malting barley to UK malting. http://www.ukmalt.com/maltingbarley/controlintake.asp.

  161. Makepeace, J. C., Havis, N. D., Burke, J. I., Oxley, S. J. P., & Brown, J. K. M. (2008). A method of inoculating barley seedlings with Ramularia collo-cygni. Plant Pathology, 57, 991–999.

  162. Malt Products Corporation (2010). Food and beverage applications. http://www.maltproducts.com/applications.html.

  163. Martin, P., & Chang, X. (2007). Beer and bere: growing old cereals on northern islands. Brewer and Distiller International, 3, 29.

  164. McDonald, G. K., Eglinton, J. K., & Barr, A. R. (2010). Assessment of the agronomic value of QTL on chromosomes 2H and 4H linked to tolerance to boron toxicity in barley (Hordeum vulgare L.). Plant and Soil, 326, 275–290.

  165. Melchinger, A. E., Graner, A., & Singh, M. (1994). Relationships among European barley germplasm 1. Genetic diversity among winter and spring cultivars revealed by RFLPS. Crop Science, 34, 1191–1199.

  166. Mengel, K., Kirkby, E. A., Kosegarten, H., & Appel, T. (2001). Principles of plant nutrition. Dordrecht: Kluwer.

  167. Meredith, W. O. S., Anderson, J. A., & Hudson, L. E. (1962). Evaluation of malting barley. In A. H. Cook (Ed.), Barley and malt: Biology, biochemistry and technology (pp. 207–270). London and New York: Academic.

  168. Metzker, M. L. (2009). Sequencing technologies - the next generation. Nature Reviews. Genetics, 11, 31–46.

  169. Meuwissen, T. H. E., Hayes, B. J., & Goddard, M. E. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157, 1819–1829.

  170. Milus, E. A., Kristensen, K., & Hovmøller, M. S. (2009). Evidence for increased aggressiveness in a recent widespread strain of Puccinia striiformis f. sp. tritici causing stripe rust of wheat. Phytopathology, 99, 89–94.

  171. Molina-Cano, J.-L., Francesch, M., Perez-Vendrell, A. M., Ramo, T., Voltas, J., & Brufau, J. (1997). Genetic and environmental variation in malting and feed quality of barley. Journal of Cereal Science, 25, 37–47.

  172. Molina-Cano, J. L., Moralejo, M., Igartua, E., & Romagosa, I. (1999). Further evidence supporting Morocco as a center of origin of barley. Theoretical and Applied Genetics, 98, 913–918.

  173. Monneveux, P., Reynolds, M. P., Trethowan, R., Peña, J., & Zapata, F. (2004). Carbon isotope discrimination, leaf ash content and grain yield in bread and durum wheat grown under full-irrigated conditions. Journal of Agronomy and Crop Science, 190, 389–394.

  174. Montague-Jones, G. (2010). Americans fall out of love with imported beer. http://www.beveragedaily.com/Markets/Americans-fall-out-of-love-with-imported-beer.

  175. Moose, S. P., & Mumm, R. H. (2008). Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiology, 147, 969–977.

  176. Morrell, P. L., & Clegg, M. T. (2007). Evidence for a second domestication of barley (Hordeum vulgare) east of the Fertile Crescent. Proceedings of the National Academy of Sciences of the United States of America, 104, 3289–3294.

  177. Munck, L., Karlsson, K. E., Hagberg, A., & Eggum, B. O. (1970). Gene for improved nutritional value in barley seed protein. Science, 168, 985–987.

  178. Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681.

  179. Nevo, E. (1992). Origin, evolution, population genetics and resources for breeding of wild barley, Hordeum spontaneum, in the fertile crescent. In P. R. Shewry (Ed.), Barley: Genetics, biochemistry, molecular biology and biotechnology (pp. 19–43). Wallingford: CAB International.

  180. Nevo, E. (1995). Asian, African and American biota meet at ‘Evolution Canyon’ Israel: local tests of global biodiversity and genetic diversity patterns. Proceedings of the Royal Society of London B, 262, 149–155.

  181. Nevo, E. (1997). Evolution in action across phylogeny caused by microclimatic stresses at ‘Evolution Canyon’. Theoretical Population Biology, 52, 231–243.

  182. Nevo, E. (2001). Evolution of genome-phenome diversity under environmental stress. Proceedings of the National Academy of Sciences of the United States of America, 98, 6233–6240.

  183. Nevo, E. (2006). Genome evolution of wild cereal diversity and prospects for crop improvement. Plant Genetic Resources, 4, 36–46.

  184. Nevo, E., & Chen, G. (2010). Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant, Cell & Environment, 33, 670–685.

  185. Nevo, E., Beharav, A., Meyer, R. C., Hackett, C. A., Forster, B. P., Russell, J. R., et al. (2005). Genomic microsatellite adaptive divergence of wild barley by microclimatic stress in ‘Evolution Canyon’, Israel. Biological Journal of the Linnean Society, 84, 205–224.

  186. Newman, C. W., & Newman, R. K. (2006). A brief history of barley foods. Cereal Foods World, 51, 4–7.

  187. Newman, R. K., Newman, C. W., & Graham, H. (1989). The hypocholesterolemic function of barley B-glucan. Cereal Foods World, 34, 883–886.

  188. Newton, A. C., & Guy, D. C. (2009). The effects of uneven, patchy cultivar mixtures on disease control and yield in winter barley. Field Crops Research, 110, 225–228.

  189. Newton, A. C., & Young, I. M. (1996). Temporary partial breakdown of Mlo-resistance in spring barley by the sudden relief of soil water stress. Plant Pathology, 45, 970–974.

  190. Newton, A. C., Swanston, J. S., Guy, D., & Hallett, P. D. (2008). Variety mixtures: on farm mixing and interaction with cultivation methods. Proceedings of the Crop Protection in Northern. Britain Conference, 2008, 115–120.

  191. Newton, A. C., Begg, G., & Swanston, J. S. (2009). Deployment of diversity for enhanced crop function. The Annals of Applied Biology, 154, 309–322.

  192. Newton, A. C., Aker, T., Baresel, J. P., Bebeli, P., Bettencourt, E., Bladenopoulos, K. V., et al. (2010a). Cereal landraces for sustainable agriculture: a review. Agronomy for Sustainable Development, 30, 237–269.

  193. Newton, A. C., Fitt, B. D. L., Daniell, T., Atkins, S. D., & Walters, D. R. (2010b). Pathogenesis, mutualism and parasitism, in the trophic space of microbial-plant interactions. Trends in Microbiology, 18, 365–373.

  194. Newton, A. C., Johnson, S. N., & Gregory, P. J. (2011a). Implications of climate change on diseases, crop yields and food security. Euphytica. doi:10.1007/s10681-011-0359-4.

  195. Newton, A. C., Gravouil, C., & Fountaine, J. M. (2011b). Managing the ecology of foliar pathogens: ecological tolerance in crops. The Annals of Applied Biology, 157, 343–359.

  196. Nicol, S. (2009). The Scotch Whisky Industry. SPICe Briefing 09/76 Scottish Parliament Information Centre (SPICe): Edinburgh.

  197. Nicol, J. M., Elekçioğlu, I. H., Bolat, N., & Rivoal, R. (2007). The global importance of the cereal cyst nematode (Heterodera spp.) on wheat and international approaches to its control. Communications in Agricultural and Applied Biological Sciences, 72, 677–686.

  198. Oakley, J. N., Cumbleton, P. C., Corbett, S. J., Saunderst, P., Green, D. I., Young, J. E. B., et al. (1998). Prediction of orange wheat blossom midge activity and risk of damage. Crop Protection, 17, 145–149.

  199. Oakley, J. N., Talbot, G., Dyer, C., Self, M. M., Freer, J. B. S., Angus, W. J., et al. (2005). Integrated control of wheat blossom midge: Variety choice, use of pheromone traps and treatment thresholds. Home-Grown Cereal Authority. Project Report No. 363.

  200. Ordon, F., Ahlemeyer, J., Werner, K., Köhler, W., & Friedt, W. (2005). Molecular assessment of genetic diversity in winter barley and its use in breeding. Euphytica, 146, 21–28.

  201. Oxley, S. J. P., Havis, N., & Evans, A. (2010). A guide to the recognition and understanding of Ramularia and other leaf spots of barley. UK: HGCA.

  202. Palmer, G. H. (1995). Structure of ancient cereal grains. Journal of the Institute of Brewing, 101, 103–112.

  203. Palmer, S. (2006). The buzz on beta-glucans. Food product design. May 5, 2006. http://www.foodproductdesign.com/articles/2006/05/the-buzz-on-beta-glucans.aspx.

  204. Paulitz, T. C., & Steffenson, B. J. (2011). Biotic stress in barley: Disease problems and solutions. In S. E. Ullrich (Ed.), Barley production, improvement, and uses (pp. 307–354). Ames: Wiley-Blackwell.

  205. Peltonen-Sainio, P., Jauhiainen, L., Hakala, K., & Ojanen, H. (2009). Climate change and prolongation of growing season: changes in regional potential for filed crop production in Finland. Agricultural and Food Science, 18, 171.

  206. Persson, D. P., Hansen, T. H., Holm, P. E., Schjoerring, J. K., Hansen, H. C. B., Nielsen, J., et al. (2006). Multi-elemental speciation analysis of barley genotypes differing in tolerance to cadmium toxicity using SEC-ICP-MS and ESI-TOF-MS. Journal of Analytical Atomic Spectrometry, 21, 996–1005.

  207. Petterson, O. (1977). Differences in cadmium uptake between plant species and cultivars. Swedish Journal of Agricultural Research, 7, 21–24.

  208. Pickering, R., Ruge-Wehling, B., Johnston, P. A., Schweizer, G., Ackermann, P., & Wehling, P. (2006). The transfer of a gene conferring resistance to scald (Rhynchosporium secalis) from Hordeum bulbosum into H. vulgare chromosome 4HS. Plant Breeding, 125, 576–579.

  209. Pinheiro, H. A., Damatta, F. M., Chaves, A. R. M., & Lourerio, M. E. (2005). Drought tolerance is associated with rooting depth and stomatal control of water use in clones of Coffea canephora. Annals of Botany, 96, 101–108.

  210. Plato Logic (2008). World beer report 2008 – production sheet summary extract. http://www.ukmalt.com/maltindustry/documents/PlatoLogicWORLDBEERProductionSummaryfrom2008Edition.pdf.

  211. Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S., et al. (1996). The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding, 2, 225–238.

  212. Prášil, I. T., Prášilová, P., & Mařík, P. (2007). Comparative study of direct and indirect evaluations of frost tolerance in barley. Field Crops Research, 102, 1–8.

  213. Rae, S. J., Macaulay, M., Ramsay, L., Leigh, F., Matthews, D., O’Sullivan, D. M., et al. (2007). Molecular barley breeding. Euphytica, 158, 295–303.

  214. Rasmussen, S. K., & Hatzack, F. (1998). Identification of two low-phytate barley (Hordeum vulgare L.) grain mutants by TLC and genetic analysis. Hereditas, 129, 107–112.

  215. Reid, R. (2010). Can we really increase yields by making crop plants tolerant to boron toxicity? Plant Science, 178, 9–11.

  216. Revoredo-Giha, C., & Leat, P. (2010). Enhancing the integration of agri-food chains: Challenges for UK malting barley. In C. Fischer & M. Hartmann (Eds.), Agri-food chain relationships (pp. 135–149). Oxford: CAB International.

  217. Reynolds, M., & Tuberosa, R. (2008). Translational research impacting on crop productivity in drought-prone environments. Current Opinion in Plant Biology, 11, 171–179.

  218. Reynolds, M. P., van Ginkel, M., & Ribaut, J. (2000). Avenues for genetic modification of radiation use efficiency in wheat. Journal of Experimental Botany, 51, 459–473.

  219. Reynolds, M. P., Pellegrineseschi, A., & Skovmand, B. (2005). Sink-limitation to yield and biomass: a summary of some investigations in spring wheat. The Annals of Applied Biology, 146, 39–49.

  220. Richards, R. A. (2000). Selectable traits to increase crop photosynthesis and yield of grain crops. Journal of Experimental Botany, 51, 447–458.

  221. Richards, R. A. (2006). Physiological traits used in the breeding of new cultivars for water-scarce environments. Agricultural Water Management, 80, 197–211.

  222. Richards, R. A., Rebetzke, G. J., Condon, A. G., & van Herwaarden, A. F. (2002). Breeding opportunities for increasing the efficiency of water use and crop yield in temperate cereals. Crop Science, 42, 111–121.

  223. Robinson, D. (1996). Resource capture by localized root proliferation: why do plants bother? Annals of Botany, 77, 179–185.

  224. Robinson, D., Hodge, A., Griffiths, B. S., & Fitter, A. H. (1999). Plant root proliferation in nitrogen-rich patches confers competitive advantage. Proceedings of the Royal Society of London B, 266, 431–435.

  225. Roelfs, A. P., Singh, R., & Saari, E. E. (1992). Rust diseases of wheat: Concepts and methods of disease management. Mexico: CIMMYT.

  226. Rostoks, N., Ramsay, L., Mackenzie, K., Cardle, L., Svensson, J. T., Bhat, P., et al. (2006). Human-induced population structure in inbreeding crop species facilitates whole genome association mapping. Proceedings of the National Academy of Sciences of the United States of America, 103, 18656–18661.

  227. Rouse, M., & Jin, Y. (2009). Aggressiveness of races TTKSK and QFCSC of Puccinia graminis f. sp. tritici at various temperatures. In M. S. Akkaya (Ed.), Abstr 12th Int Cereal Rusts Powdery Mildew Conf http://www.crpmb.org/icrpmc12/ICRPMC_updated-corrected%20abstract%20book_2.pdf.

  228. Rudgers, J. A., & Swafford, A. L. (2009). Benefits of a fungal endophyte in Elymus virginicus decline under drought stress. Basic and Applied Ecology, 10, 43–51.

  229. Russell, J. R., Fuller, J. D., Macaulay, M., Hatz, B. G., Jahoor, J., Powell, W., et al. (1997). Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theoretical and Applied Genetics, 95, 714–722.

  230. Russell, J. R., Ellis, R. P., Thomas, W. T. B., Waugh, R., Provan, J., Booth, A., et al. (2000). A retrospective analysis of spring barley germplasm development from ‘foundation genotypes’ to currently successful cultivars. Molecular Breeding, 6, 553–568.

  231. Russell, J. R., Booth, A., Fuller, J., Baum, M., Ceccarelli, S., Grando, S., et al. (2003). Patterns of polymorphism detected in the chloroplast and nuclear genomes of barley landraces sampled from Syria and Jordan. Theoretical and Applied Genetics, 107, 413–442.

  232. Russell, J. R., Dawson, I. K., Flavell, A. J., Steffenson, B., Weltzien, E., Booth, A., et al. (2011). Analysis of more than 1,000 SNPs in geographically-matched samples of landrace and wild barley indicates secondary contact and chromosome-level differences in diversity around domestication genes. New Phytologist. doi:10.1111/j.1469-8137.2011.03704.x.

  233. Saisho, D., & Purugganan, M. D. (2007). Two origins of barley: molecular phylogeography of domesticated barley traces expansion of agriculture in the Old World. Genetics, 177, 1765–1776.

  234. Salekdeh, G. H., Reynolds, M., Bennett, J., & Boyer, J. (2009). Conceptual framework for drought phenotyping during molecular breeding. Trends in Plant Science, 14, 488–496.

  235. Salse, J., Abrouk, M., Bolot, S., Guilhot, N., Courcelle, E., Faraut, T., et al. (2009). Reconstruction of monocotyledonous proto-chromosomes reveals faster evolution in plants than in animals. Proceedings of the National Academy of Sciences of the United States of America, 106, 14908–14913.

  236. Samarah, N. H., Alqudah, A. M., Amayreh, J. A., & McAndrews, G. M. (2009). The effect of late-terminal drought stress on yield components of four barley cultivars. Journal of Agronomy and Crop Science, 195, 427–441.

  237. Sandberg, A.-S. (1991). The effect of food processing on phytate hydrolysis and availability of iron and zinc. In M. Friedman (Ed.), Nutritional and toxilogical consequences of food processing (pp. 499–508). New York: Plenum.

  238. Schmierer, D. A., Kandemir, N., Kudrna, D. A., Jones, B. L., Ullrich, S. E., & Kleinhofs, A. (2004). Molecular marker-assisted selection for enhanced yield in malting barley. Molecular Breeding, 14, 463–473.

  239. Schulte, D., Close, T. J., Graner, A., Langridge, P., Matsumoto, T., Muehlbauer, G. J., et al. (2009). International Barley Sequencing Consortium - at the threshold of efficient access to the barley genome. Plant Physiology, 149, 142–147.

  240. Schut, J. W., Qi, X., & Stam, P. (1997). Association between relationship measures based on AFLP markers, pedigree data and morphological traits in barley. Theoretical and Applied Genetics, 95, 1161–1168.

  241. Sharma, M., Schmid, M., Rothballer, M., Hause, G., Zuccaro, A., Imani, J., et al. (2008). Detection and identification of bacteria intimately associated with fungi of the order Sebacinales. Cellular Microbiology, 10, 2235–2246.

  242. Singh, R. P., Hodson, D. P., Huerta-Espino, J., Jin, Y., Njau, P., Wanyera, R., et al. (2008). Will stem rust destroy the world’s wheat crop? Advances in Agronomy, 98, 271–309.

  243. Slafer, G. A., Araus, J. L., Royo, C., & Garcia del Moral, L. F. (2005). Promising eco-physiological traits for genetic improvement of cereal yields in Mediterranean environments. The Annals of Applied Biology, 146, 61–70.

  244. Steffenson, B. J. (2003). Fusarium head blight of barley: Impact, epidemics, management, and strategies for identifying and utilizing genetic resistance. In K. J. Leonard & W. R. Bushnell (Eds.), Fusarium head blight of wheat and barley (pp. 241–295). St. Paul: APS. 512 pp.

  245. Steffenson, B. J., Jin, Y., Brueggeman, R. S., Kleinhofs, A., & Sun, Y. (2009). Resistance to stem rust race TTKSK maps to the rpg4/Rpg5 complex of chromosome 5H of barley. Phytopathology, 99, 1135–1141.

  246. Stewart, K. J. (2002). Abiotic stress and mlo-resistance breakdown to barley powdery mildew. D.Phil Thesis. UK: University of Oxford.

  247. Stockinger, E. J., Skinner, J. S., Gardner, K. G., Francia, E., & Pecchioni, N. (2007). Expression levels of barley Cbf genes at the Frost-resistance-H2 locus are dependent upon alleles at Fr-H1 and Fr-H2. The Plant Journal, 51, 308–321.

  248. Struss, D., & Plieske, J. (1998). The use of microsatellite markers for detection of genetic diversity in barley populations. Theoretical and Applied Genetics, 97, 308–315.

  249. Suprunova, T., Krugman, T., Fahima, T., Chen, G., Shams, I., Korol, A., et al. (2004). Differential expression of dehydrin genes in wild barley, Hordeum spontaneum, associated with resistance to water deficit. Plant, Cell & Environment, 27, 1297–1308.

  250. Suprunova, T., Krugman, T., Distelfeld, A., Fahima, T., Nevo, E., & Korol, A. (2007). Identification of a novel gene (Hsdr4) involved in water-stress tolerance in wild barley. Plant Molecular Biology, 64, 17–34.

  251. Sutton, J. C. (1982). Epidemiology of wheat head blight and maize ear rot caused by Fusarium graminearum. Canadian Journal of Plant Pathology, 4, 195–209.

  252. Sutton, T., Baumann, U., Hayes, J., Collins, N. C., Shi, B.-J., Schnurbusch, T., et al. (2007). Boron-toxicity tolerance in barley arising from efflux transporter amplification. Science, 318, 1446–1449.

  253. Swanston, J. S., Newton, A. C., Hoad, S., & Spoor, W. (2006). Variation across environments in patterns of water uptake and endosperm modification in barley varieties and variety mixtures. Journal of the Science of Food and Agriculture, 86, 826–833.

  254. Talamè, V., Sanguineti, M. C., Chiapparino, E., Bahri, H., Ben Salem, M., Forster, B. P., et al. (2004). Identification of Hordeum spontaneum alleles improving field performance of barley grown under rainfed conditions. The Annals of Applied Biology, 144, 309–319.

  255. Tanksley, S. D., & McCouch, S. R. (1997). Seed banks and molecular maps: Unlocking genetic potential from the wild. Science, 227, 1063–1066.

  256. Tanno, K., Taketa, S., Takeda, K., & Komatsuda, T. (2002). A DNA marker closely linked to the vrs1 locus (row type gene) indicates multiple origins of six-rowed cultivated barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 104, 54–60.

  257. Tappy, L., Gugolz, E., & Wursch, P. (1996). Effects of breakfast cereals containing various amounts of beta glucans fibres on plasma glucose and insulin responses in NIDDM subjects. Diabetes Care, 19, 831–834.

  258. Tashi, N. (2005). Food preparation from hull-less barley in Tibet. In S. Grando & H. Gomez Macpherson (Eds.), Food barley: Importance, uses and local knowledge (pp. 115–120). Syria: ICARDA.

  259. Taylor, T. G. (1965). The availability of the calcium and phosphorus of plant materials for animals. The Proceedings of the Nutrition Society, 24, 105–112.

  260. Tester, M., & Bacic, A. (2005). Abiotic stress tolerance in grasses. From model plants to crop plants. Plant Physiology, 137, 791–793.

  261. Tiedemann, A. V., & Firsching, K. H. (2000). Interactive effects of elevated ozone and carbon dioxide on growth and yield of leaf rust-infected versus non-infected wheat. Environnement & Pollution, 108, 357–363.

  262. Tiryakioglu, M., Eker, S., Ozkutlu, F., Husted, S., & Cakmak, I. (2006). Antioxidant defense system and cadmium uptake in barley genotypes differing in cadmium tolerance. Journal of Trace Elements in Medicine and Biology, 20, 181–189.

  263. Tuberosa, R., & Salvi, S. (2006). Genomics-based approaches to improve drought tolerance of crops. Trends in Plant Science, 11, 405–412.

  264. Ullrich, S. E. (2002). Genetics and breeding of barley feed quality attributes. In G. A. Slafer, J.-L. Molina-Cano, R. Savin, J.-L. Araus, & I. Romagosa (Eds.), Barley science: Recent advances from molecular biology to agronomy of yield and quality (pp. 115–142). Binghamton: Food Products.

  265. Urashima, A. S., Martins, T. D., Bueno, C. R. N. C., Favaro, D. B., Arruda, M. A., & Mehta, Y. R. (2004). Triticale and barley: new hosts of Magnaporthe grisea in Sao Paulo, Brazil - relationship with blast of rice and wheat (pp. 251–260). In Rice blast: interaction with rice and control. Proceedings of the 3rd International Rice Blast Conference, Tsukuba Science City, Ibaraki, Japan, 11 to 14 September 2002.

  266. Varshney, R. K., Nayak, S. N., May, G. D., & Jackson, S. A. (2009). Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends, Biotechnology, 27, 522–530.

  267. Von Korff, M., Wang, H., Leon, J., & Pillen, K. (2006). AB-QTL analysis of spring barley: II Detection of favourable exotic alleles for agronomic traits introgressed from wild barley (H. vulgare ssp. spontaneum). Theoretical and Applied Genetics, 112, 1221–1231.

  268. Von Korff, M., Grando, S., Del Greco, A., This, D., Baum, M., & Ceccarelli, S. (2008). Quantitative trait loci associated with adaptation to Mediterranean dryland conditions in barley. Theoretical and Applied Genetics, 117, 653–669.

  269. von Zitzewitz, J., Szücs, P., Dubcovsky, J., Yan, L., Francia, E., Pecchioni, N., et al. (2005). Molecular and structural characterization of barley vernalization genes. Plant Molecular Biology, 59, 449–467.

  270. Wahbi, A., & Gregory, P. J. (1989). Genotypic differences in root and shoot growth of barley (Hordeum vulgare). 1. Glasshouse studies of young plants and effects of rooting medium. Experimental Agriculture, 25, 375–387.

  271. Waller, F., Achatz, B., Baltruschat, H., Fodor, J., Becker, K., Fischer, M., et al. (2005). The endophytic fungus Piriformospora indica reprograms barley to salt-tolerance, disease resistance and higher yield. Proceedings of the National Academy of Sciences of the United States of America, 102, 13386–13391.

  272. Walters, D., Lyon, G. D., & Newton, A. C. (2007). In D. Walters, G. Lyon, & A. Newton (Eds.), Induced resistance for plant defence: a sustainable approach to crop protection (p. 258pp). Oxford: Blackwell Publishing.

  273. Walters, D. R., Havis, N. D., & Oxley, S. J. P. (2008). Ramularia collo-cygni: the biology of an emerging pathogen of barley. FEMS Microbiology Letters, 279, 1–7.

  274. Wei, Y. M., Baum, B. R., Nevo, E., & Zheng, Y. L. (2005). Does domestication mimic speciation? 1. A population-genetic analysis of Hordeum spontaneum and Hordeum vulgare based on AFLP and evolutionary considerations. Canadian Journal of Botany, 83, 1496–1512.

  275. Weltzien, E. (1988). Evaluation of barley (Hordeum vulgare L.) landrace populations originating from different growing regions in the Near East. Plant Breeding, 101, 95–106.

  276. Werner, K., Friedt, W., & Ordon, F. (2005). Strategies for pyramiding resistance genes against the barley yellow mosaic virus complex (BaMMV, BaYMV, BaYMV-2). Molecular Breeding, 16, 45–55.

  277. White, P. J., & Broadley, M. R. (2009). Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine. The New Phytologist, 182, 49–84.

  278. White, P. J., & Brown, P. H. (2010). Plant nutrition for sustainable development and global health. Annals of Botany, 105, 1073–1080.

  279. White, P. J., & Greenwood, D. J. (2011). Properties and management of cationic elements for crop growth. In P. J. Gregory & S. Nortcliff (Eds.), Russell’s soil conditions and plant growth (12th edn). Wiley/Blackwell, in press.

  280. White, P. J., & Hammond, J. P. (2008). Phosphorus nutrition of terrestrial plants. In P. J. White & J. P. Hammond (Eds.), The ecophysiology of plant-phosphorus interactions (pp. 51–81). Dordrecht: Springer.

  281. White, W. B., Bird, H. R., Sunde, M. L., & Marlett, J. A. (1983). Viscosity of β-glucan as a factor in enzymatic improvement of barley for chicks. Poultry Science, 62, 853–862.

  282. White, P. J., Broadley, M. R., Greenwood, D. J., & Hammond, J. P. (2005). Genetic modifications to improve phosphorus acquisition by roots. Proceedings 568. York: International Fertiliser Society.

  283. White, P. J., Bengough, A. G., Bingham, I. J., George, T. S., Karley, A. J., & Valentine, T. A. (2009). Induced mutations affecting root architecture and mineral acquisition in barley. In Q. Y. Shu (Ed.), Induced plant mutations in the genomics era (pp. 338–340). Rome: Food and Agriculture Organization of the United Nations.

  284. Woldeamlak, A. (2001). Mixed cropping of barley (Hordeum vulgare) and wheat (Triticum aestivum) landraces in the Central Highlands of Eritrea. PhD Thesis. The Netherlands: Wageningen University.

  285. Woldeamlak, A., Grando, S., Maatougui, M., & Ceccarelli, S. (2008). Hanfets a barley and wheat mixture in Eritrea: yield, stability and farmer preferences. Field Crops Research, 109, 50–56.

  286. Wood, P. J., Anderson, J. W., Braaten, J. T., Cave, N. A., Scott, F. W., & Vachon, C. (1989). Physiological effects of β-D-glucan rich fractions from oats. Cereal Foods World, 34, 878–882.

  287. Wu, F., Dong, J., Cai, Y., Chen, F., & Zhang, G. (2007). Differences in Mn uptake and subcellular distribution in different barley genotypes as a response to Cd toxicity. Science of the Total Environment, 385, 228–234.

  288. Young, L., & Hobbs, J. (2002). Vertical linkages in agri-food supply chains: changing roles for producers, commodity groups, and government policy. Review of Agricultural Economics, 24, 428–441.

  289. Zhan, J., Fitt, B. D. L., Pinnschmidt, H. O., Oxley, S. J. P., & Newton, A. C. (2008). Resistance, epidemiology and sustainable management of Rhynchosporium secalis populations on barley. Plant Pathology, 57, 1–14.

  290. Zhong, S., Dekkers, J. C. M., Fernando, R. L., & Jannink, J.-L. (2009). Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a barley case study. Genetics, 182, 355–364.

  291. Zhu, Y.-G., Smith, F. A., & Smith, S. E. (2002). Phosphorus efficiencies and their effects on Zn, Cu, and Mn nutrition of different barley (Hordeum vulgare) cultivars grown in sand culture. Australian Journal of Agricultural Research, 53, 211–216.

  292. Zohary, D., & Hopf, M. (1988). Domestication of plants in the old world: The origin and spread of cultivated plants in West Asia, Europe and the Nile Valley. Oxford: Clarendon.

  293. Zong, L. Z., Liang, S., Xu, X., Li, S. H., Jing, J. H., & Monneveux, P. (2008). Relationships between carbon isotope discrimination and leaf morpho-physiological traits in spring-planted spring wheat under drought and salinity stress in Northern China. Australian Journal of Agricultural Research, 59, 941–949.

Download references

Acknowledgements

We thank the Scottish Government Rural Payments and Incentives Directorate for funding from the Sustainable Agriculture - Plants programme, Steven Thomson (SAC) for the production of maps, and Brian Steffenson acknowledges the support of the Scottish Society of Crop Research.

Author information

Correspondence to Adrian Clive Newton.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Newton, A.C., Flavell, A.J., George, T.S. et al. Crops that feed the world 4. Barley: a resilient crop? Strengths and weaknesses in the context of food security. Food Sec. 3, 141 (2011). https://doi.org/10.1007/s12571-011-0126-3

Download citation

Keywords

  • Barley
  • Hordeum vulgare
  • Quality
  • Yield
  • Supply chain
  • Sustainability
  • Resilience
  • Biotic stress
  • Abiotic stress
  • Food security
  • Physiology
  • Agronomy
  • Cultivation
  • Nutrient use efficiency
  • Water use efficiency
  • Germplasm
  • Biodiversity
  • Genomics