Skip to main content

Advertisement

Log in

Stress-adapted extremophiles provide energy without interference with food production

  • Original Paper
  • Published:
Food Security Aims and scope Submit manuscript

Abstract

How to wean humanity off the use of fossil fuels continues to receive much attention but how to replace these fuels with renewable sources of energy has become a contentious field of debate as well as research, which often reflects economic and political factors rather than scientific good sense. It is clear that not every advertized energy source can lead to a sustainable, humane and environment-friendly path out of a future energy crisis. Our proposal is based on two assertions: that the use of food crops for biofuels is immoral, and that for this purpose using land suitable for growing crops productively is to be avoided. We advocate a focus on new “extremophile” crops. These would either be wild species adapted to extreme environments which express genes, developmental processes and metabolic pathways that distinguish them from traditional crops or existing crops genetically modified to withstand extreme environments. Such extremophile energy crops (EECs), will be less susceptible to stresses in a changing global environment and provide higher yields than existing crops. Moreover, they will grow on land that has never been valuable for agriculture or is no longer so, owing to centuries or millennia of imprudent exploitation. Such a policy will contribute to striking a balance between ecosystem protection and human resource management. Beyond that, rather than bulk liquid fuel generation, combustion of various biomass sources including extremophiles for generating electrical energy, and photovoltaics-based capture of solar energy, are superbly suitable candidates for powering the world in the future. Generating electricity and efficient storage capacity is quite possibly the only way for a sustainable post-fossil and, indeed, post-biofuel fuel economy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Achten, W. M. J., Mathijs, E., Verchot, L., Singh, V. P., Aerts, R., & Muys, B. (2007). Jatropha biodiesel fueling sustainability. Biofuels, Bioproducts and Biorefining, 1, 283–291.

    Article  CAS  Google Scholar 

  • Amtmann, A., Bohnert, H. J., & Bressan, R. A. (2005). Abiotic stress and plant genome evolution. Search for new models. Plant Physiology, 138, 127–130.

    Article  PubMed  CAS  Google Scholar 

  • Aronson, J. A., Pasternak, D., & Danon, A. (1988). Introduction and first evaluation of 120 halophytes under seawater irrigation. In E. E. Whitehead, C. F. Hutchinson, B. N. Timmerman, & R. G. Varady (Eds.), Arid lands today and tomorrow: Proceedings of an international research and development conference (pp. 737–746). Boulder: Westview.

    Google Scholar 

  • Azam, M. M., Waris, A., & Nahar, N. M. (2005). Prospects and potential of fatty acid methyl esters of some non-traditional seed oils for use as biodiesel in India. Biomass and Bioenergy, 29, 293–302.

    Article  Google Scholar 

  • Bänziger, M., Setimela, P. S., Hodson, D., & Vivek, B. (2006). Breeding for improved abiotic stress tolerance in maize in southern Africa. Agric Water Management, 80, 212–224.

    Article  Google Scholar 

  • Beer, L. L., Boyd, E. S., Peters, J. W., & Posewitz, M. C. (2009). Engineering algae for biohydrogen and biofuel production. Current Opinion in Biotechnology, 20, 264–271.

    Article  PubMed  CAS  Google Scholar 

  • Berndes, G., Hoogwijk, M., & van den Broek, R. (2003). The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass and Bioenergy, 25, 1–28.

    Article  Google Scholar 

  • Best Research-Cell Efficiencies. National Renewable energy Laboratory, 2007.

  • Biosaline Biomass; Energy for the Netherlands in 2040 (2004) Report to SenterNovem. J. Hoek (eds.), Ocean Desert Enterprises.

  • Bogdan, A. V. (1977). Tropical pasture and fodder plants. London: Longman.

    Google Scholar 

  • Bögre, L., Magyar, Z., & Lopez-Juez, E. (2008). New clues to organ size control in plants. Genome Biology, 9, 226.

    Article  PubMed  Google Scholar 

  • Boyer, J. S. (1982). Plant productivity and environment. Science, 218, 443–448.

    Article  PubMed  CAS  Google Scholar 

  • Bressan, R. A., Zhang, C., Zhang, H., Hasegawa, P. M., Bohnert, H. J., & Zhu, J. K. (2001). Learning from the Arabidopsis experience. The next gene search paradigm. Plant Physiology, 127, 1354–1360.

    Article  PubMed  CAS  Google Scholar 

  • Brown, L. R. (2008). Plan B 3.0: Mobilizing to save civilization. New York: W.W. Norton & Company.

    Google Scholar 

  • Campbell, J. E., Lobell, D. B., & Field, C. B. (2009). Greater transportation energy and GHG offsets from bioelectricity than ethanol. Science, 324, 1055–1057.

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy, V., & Zhu, J. K. (2009). Epigenetic regulation of stress responses in plants. Current Opinion in Plant Biology, 12, 133–139.

    Article  PubMed  CAS  Google Scholar 

  • Cleark, P. J., & Jacoby, C. A. (1994). Biomass and above ground productivity of salt marsh plants in south eastern Australia. Australian Journal of Marine & Freshwater Research, 45, 1521–1528.

    Article  Google Scholar 

  • Dakheel, A. A., Hadrami, G. A., Shoraby, S. A., Shabbir, G. (2008). The potential of salt tolerant plants and marginal resources in developing an integrated forage-live stock production system. 2nd International Salinity forum. Salinity, water and society- global issues, local action. [http://www.internationalsalinityforum.org/].

  • Dash, A. K., Pradhan, R. C., Das, L. M., & Naik, S. N. (2008). Some physical properties of Simarouba fruit and kernel. International Agrophysics, 22, 111–116.

    Google Scholar 

  • Deshmukh, S. J., & Bhuyar, L. B. (2009). Transesterified hingan (Balanites) oil as a fuel for compression ignition engines. Biomass and Bioenergy, 33, 108–112.

    Article  CAS  Google Scholar 

  • Duke, J. A. (1983). Handbook of energy crops (unpublished) Available from: URL: http://www.hort.purdue.edu/newcrop/dukeenergy/dukeindex.

  • Edmeades, G. O., Bolaños, J., Chapman, S. C., Lafitte, H. R., & Bänziger, M. (1999). Selection improves drought tolerance in tropical maize populations. Crop Science, 39, 1306–1315.

    Article  Google Scholar 

  • El Fadl, M. A. (1997). Management of Prosopis juliflora for use in agroforestry systems in the Sudan. University of Helsinki Tropical Forestry Reports, 16, 107.

    Google Scholar 

  • Evans, L. T., & Fischer, R. A. (1999). Yield potential: it’s definition, measurement, and significance. Crop Science, 39, 1544–1551.

    Article  Google Scholar 

  • Evans, D. O., & Rotar, P. P. (1987). Productivity of Sesbania species. Tropical Agriculture, 64, 193–200.

    Google Scholar 

  • Falkenmark, M., Rockström, J., & Karlberg, L. (2009). Present and future water requirements for feeding humanity. Food Security, 1, 59–69.

    Article  Google Scholar 

  • Food and Agriculture Organization of the United Nations. (2003). Application of molecular biology and genomics to genetic enhancement of crop tolerance to abiotic stress. http://www.fao.org/WAIRDOCS/TAC/Y5198E/y5198e00.htm.

  • Gallagher, J. L. (1985). Halophytic crops for cultivation at seawater salinity. Plant and Soil, 89, 323–336.

    Article  Google Scholar 

  • Garnier, E., Navas, M.-L., Austin, M. P., Lilley, J. M., & Gifford, R. M. (1997). A problem for biodiversity-productivity studies: how to compare the productivity of multispecific plant mixtures to that of monocultures? Acta Oecologica, 18, 657–670.

    Article  Google Scholar 

  • Glenn, E. P., & O’Leary, J. W. (1985). Productivity and irrigation requirements of halophytes grown with seawater in the Sonoran Desert. Journal of Arid Environments, 9, 81–91.

    Google Scholar 

  • Glenn, E. P., O’Leary, J. W., Watson, M. C., Thompson, T. L., & Kuehl, R. O. (1991). Salicornia bigelovii Torr.: an oilseed halophyte for seawater irrigation. Science, 251, 1065–1067.

    Article  PubMed  CAS  Google Scholar 

  • Global Climate and Energy Project. (2010). Stanford University, http://gcep.stanford.edu/.

  • Goel, V. L., & Behl, H. M. (2005). Growth and productivity assessment of Casuarina glauca Sieb. ex.Spreng on sodic soil sites. Bioresource Technology, 96, 1399–1404.

    Article  PubMed  CAS  Google Scholar 

  • Graham, R. L., Nelson, R., Sheehan, J., Perlack, R. D., & Wright, L. L. (2007). Current and potential U.S. corn stover supplies. Agronomy Journal, 99, 1–11.

    Article  Google Scholar 

  • Gutierrez, A. P., & Ponti, L. (2009). Bio-economic sustainability of cellulosic biofuel production on marginal lands. Bulletin of Science Technology and Society, 29, 213–225.

    Google Scholar 

  • Hall, D. O. (1979). In D. O. Hall (Ed.), Biomass for energy (pp. 1–18). London: UK Section of the International Solar Energy Society.

    Google Scholar 

  • Hardin, G. (1986). The tragedy of the commons. Science, 162, 1243–1248.

    Google Scholar 

  • Hardin, L. S. (2008). Meetings that changed the world—Bellagio 1969: the green revolution. Nature, 455, 470–471.

    Article  PubMed  CAS  Google Scholar 

  • Heaton, E. A., Dohleman, F. G., & Long, S. P. (2008). Meeting US biofuel goals with less land: the potential of Miscanthus. Global Change Biology, 14, 2000–2014.

    Article  Google Scholar 

  • Hendricks, R. C. & Bushnell, D. M. (2008). Halophyte energy feedstocks: back to our roots. 12th International Symposium on Transport Phenomena and Dynamics of rotating Machinery, Honolulu, Hawaii, 2008.

  • Huang, J., Pray, C., & Rozelle, S. (2002). Enhancing the crops to feed the poor. Nature, 418, 678–684.

    Article  PubMed  CAS  Google Scholar 

  • Jablonka, E., & Raz, G. (2007). Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Quarterly Reviews of Biology, 84, 131–176.

    Article  Google Scholar 

  • Jongschaap, R. E. E., Corre, W. J., Bindraban, P. S., Brandenburg, & W. A. (2007). Claims and facts on Jatropha curcas L. Wageningen, The Netherlands: Plant Research International B.V; < http://www.factfuels.org/media_en/Claims_and_Facts_on_Jatropha.

  • Kaffka, S. R., & Hills, F. J. (1992). Can feedstock production for biofuels be sustainable in California? California Agriculture, 63, 202–207.

    Google Scholar 

  • Kant, S., Bi, Y. M., Weretilnyk, E., Barak, S., & Rothstein, S. J. (2008). The Arabidopsis halophytic relative Thellungiella halophila tolerates nitrogen-limiting conditions by maintaining growth, nitrogen uptake, and assimilation. Plant Physiology, 147, 1168–1180.

    Article  PubMed  CAS  Google Scholar 

  • Karmee, S. K., & Chadha, A. (2005). Preparation of biodiesel from crude oil of Pongamia pinnata. Bioresource Technology, 96, 1425–1429.

    Article  PubMed  CAS  Google Scholar 

  • Kawahara, T., Kanazawa, Y., & Sakurai, S. (1981). Biomass and net production of man-made forests in the Philippines. Journal of Japanese Forest Society, 63, 320–327.

    Google Scholar 

  • Kinzelbach, W. (2009). Water and Sustainability in a Global Perspective. KAUST Inauguration Symposium: Sustainability in a Changing Climate, Thuwal, Saudi Arabia, Sept. 24, 2009

  • Lam, M. K., Tan, K. T., Lee, K. T., & Mohamed, A. R. (2009). Malaysian palm oil: surviving the food versus fuel dispute for a sustainable future. Renewable & Sustainable Energy Reviews, 13, 1456–1465.

    Article  CAS  Google Scholar 

  • Laureysens, I., Bogaert, J., Bluest, R., & Ceulemans, R. (2004). Biomass production of 17 poplar clones in a short rotation coppice culture on a waste disposal site and its relation to soil characteristics. Forest Ecology and Management, 187, 295–309.

    Article  Google Scholar 

  • Lemus, R., Oldham, L., & Crouse, K. (2008). Soil nutrient recommendations for switchgrass production in Mississippi. In: Annual Meeting Abstracts [CD-ROM]. Southern Plant Nutrient Management Conference State Report, 4–5 November 2008, Olive Branch, MS.

  • Marris, E. (2008). Water: more crop per drop. Nature, 452, 273–277.

    Article  PubMed  CAS  Google Scholar 

  • McKendry, P. (2002). Energy production from biomass (part 3): gasification technologies. Bioresource Technology, 83, 55–63.

    Google Scholar 

  • Messmer, R., Fracheboud, Y., Bänziger, M., Vargas, M., Stamp, P., & Ribaut, J. M. (2009). Drought stress and tropical maize: QTL-by-environment interactions and stability of QTLs across environments for yield components and secondary traits. Theoretical and Applied Genetics, 119, 913–930.

    Article  PubMed  Google Scholar 

  • Mitchell, D. (2008). A note on rising food prizes. Policy Research Working Paper 4682, The World Bank, Development Prospects Group.

  • Mizrahi, Y., & Pasternak, D. (1985). Effect of salinity on various agricultural crops. In D. Pasternak & A. San-Pietro (Eds.), Biosalinity in action: Bioproduction with saline water (pp. 301–307). Dordrecht: Martinus Nijhoff.

    Google Scholar 

  • Moose, S. P., & Mumm, R. H. (2008). Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiology, 147, 969–977.

    Article  PubMed  CAS  Google Scholar 

  • Morton, J. F. (1991). The horseradish tree Moringa pterygosperma (Moringaceae)—A boon to arid lands? Economic Botany, 45, 18–333.

    Google Scholar 

  • Nelson, D. E., Repetti, P. P., Adams, T. R., Creelman, R. A., Wu, J., et al. (2007). Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proceedings of the National Academy of Sciences of the United States of America, 104, 16450–16455.

    Article  PubMed  CAS  Google Scholar 

  • NEDFCL (Northeast Development Finance Corporation Limited). (2002). http://www.nerdatabank.nic.in/csireconomic.hmt.

  • Nobel, P. S. (1991a). Achievable productivities of certain CAM plants: basis for high values compared with C3 and C4 plants. The New Phytologist, 119, 183–205.

    Article  CAS  Google Scholar 

  • Nobel, P. S. (1991b). Environmental productivity indices and productivity for Opuntia ficus-indica under current and elevated atmospheric CO2 levels. Plant Cell and Environment, 14, 637–646.

    Google Scholar 

  • Odum, E. P. (1974). Halophytes, energetics and ecosystems. In R. J. Reimold & W. H. Queen (Eds.), Ecology of halophytes (pp. 599–602). New York: Academic.

    Google Scholar 

  • Office of International Affairs [OIA]. (1990). Saline agriculture: Salt-tolerant plants for developing countries. Washington DC: National Academy.

    Google Scholar 

  • O’Leary, J. W. (1984). The role of halophytes in irrigated agriculture. In R. C. Staples & G. H. Toennissen (Eds.), Salinity tolerance in plants (pp. 285–300). New York: Wiley.

    Google Scholar 

  • Orsini, F., Paino D’Urzo, M., Inan, G., Serra, S., Oh, D. -H., Mickelbart, M. V., et al. (2010) A comparative study of salt tolerance parameters in eleven wild relatives of Arabidopsis thaliana. Journal of Experimental Botany, 61, 3787–3798.

  • Palomo, L., & Niell, F. X. (2009). Primary production and nutrient budgets of Sarcocornia perennis spp. Alpine (Lag).castroviejo in the salt marsh of Palmones river estuary (Southern Spain). Aquatic Botany, 91, 130–136.

    Article  CAS  Google Scholar 

  • Patzek, T. W. (2007). How can we outlive our way of life? 20th round table on sustainable development of biofuels: Is the cure worse than the disease? Château de la Muette: OECD Headquarters.

    Google Scholar 

  • Petyr, R., Voigt, T., Heaton, E., Dohleman, F., & Long, S. P. (2008). Growing giant Miscanthus in Illinois. http:/miscanthus.illinois.edu/wpcontent/uploads/growersguide.pdf.

  • Pimentel, D., Hurd, L. E., Bellotti, A. C., Forster, M. J., Oka, I. N., Sholes, O. D., et al. (1973). Food production and the energy crisis. Science, 182, 443–449.

    Article  PubMed  CAS  Google Scholar 

  • Pitman, M. G., & Laeuchli, A. (2002). Global impact of salinity and agricultural ecosystems. In A. Läuchli & U. Lüttge (Eds.), Salinity: Environment—Plants—Molecules. The Netherlands: Kluwer.

    Google Scholar 

  • Rivero, R. M., Kojima, M., Gepstein, A., Sakakibara, H., Mittler, R., Gepstein, S., et al. (2007). Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proceedings of the National Academy of Sciences of the United States of America, 104, 19631–19636.

    Article  PubMed  CAS  Google Scholar 

  • Samarawira, V. (1983). Date palm—potential source for refined sugar. Economic Botany, 37, 181–186.

    Article  CAS  Google Scholar 

  • Schmer, M. R., Vogel, K. P., Mitchell, R. B., & Perrin, R. K. (2008). Net energy of cellulosic ethanol from Switchgrass. Procedings of National Academy of Science, 105, 464–469.

    Google Scholar 

  • Singh, V., & Toky, O. P. (1995). Biomass and net primary productivity in Leucaena, Acacia and Eucalyptus, short rotation, high density (energy) plantations in arid India. J Arid Environments, 31, 301–30.

    Article  Google Scholar 

  • Spatari, S., Zhang, Y., & Maclean, H. L. (2005). Life cycle assessment of switchgrass- and corn stover-derived ethanol-fueled automobiles. Environmental Science & Technology, 39, 9750–9758.

    Article  CAS  Google Scholar 

  • Tester, M., & Langridge, P. (2010). Breeding technologies to increase crop production in a changing world. Science, 327, 818–822.

    Article  PubMed  CAS  Google Scholar 

  • USDA, NRCS. (2002). Plant Profile for Distichlis spicata (L.) Greene. The PLANTS Database, Version 3.5 (http://plants.usda.gov/). National Plant Data Center, Baton Rouge, LA 70874-4490 USA.

  • Vincour, B., & Altman, A. (2005). Recent advances in engineering plant tolerance to abiotic stress: Achievements and limitations. Current Opinion in Biotechnology, 16, 123–132.

    Google Scholar 

  • Waddington, S. R., Li, X., Dixon, J., Hyman, G., & de Vicente, M. C. (2010). Getting the focus right: production constraints for six major food crops in Asian and African farming systems. Food Security, 2, 27–48.

    Article  Google Scholar 

  • Westlake, D. F. (2008). Comparisons of plant productivity. Biological Reviews, 38, 385–425.

    Article  Google Scholar 

  • Weyens, N., van der Lelie, D., Taghavi, S., Newman, L., & Vangronsveld, J. (2009). Exploiting Plant-microbe partnerships to improve biomass production and remediation. Trends in Biotechnology, 27, 591–598.

    Google Scholar 

  • Williams, C. M. J., Biswas, T. K., Black, I., & Heading, S. (2008). Pathways to prosperity: second generation biomass crops for biofuels using saline lands and wastewater. Agricultural Science, 21, 28–34.

    Google Scholar 

  • Wong, C. E., Li, Y., Labbe, A., Guevara, D., Nuin, P., Whitty, B., et al. (2006). Transcriptional profiling implicates novel interactions between abiotic stress and hormonal responses in Thellungiella, a close relative of Arabidopsis. Plant Physiology, 140, 1437–1450.

    Article  PubMed  CAS  Google Scholar 

  • Woodard, K. R., & Sollenberger, L. E. (2008). Production of biofuel crops in Florida: Elephant grass. Gainesvlle: Institute of Food and Agricultural Sciences, The University of Florida .SS-AGR- 297. (http://edis.ifas.ufl.edu).

  • World Development Report. (2010). Development and climate change, UNDP-Worldbank, www.worldbank.org/wdr2010.

  • Yaniv, Z., Shabelsky, E., & Schafferman, D. (1999). Colocynth: Potential arid land oilseed from an ancient cucurbit. In J. Janick (Ed.), Prospectives on new crops and new uses (pp. 257–261). Alexandria: ASHS.

    Google Scholar 

  • Yusoff, S., & Hansen, S. B. (2007). Feasibility study of performing a life cycle assessment on crude palm oil production in Malaysia. International J Life Cycle Assessment, 12, 50–58.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Our work has been supported by funds from King-Abdullah-University for Science and Technology of Saudi Arabia, by the World Class University Program (Korea, R32–10148), by the Biogreen 21 Project of the Rural Development Administration (Korea, 20070301034030), and by University of Illinois and Purdue University institutional support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ray A. Bressan or Hans J. Bohnert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bressan, R.A., Reddy, M.P., Chung, S.H. et al. Stress-adapted extremophiles provide energy without interference with food production. Food Sec. 3, 93–105 (2011). https://doi.org/10.1007/s12571-011-0112-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12571-011-0112-9

Keywords

Navigation