Skip to main content

Evergreen Agriculture: a robust approach to sustainable food security in Africa

Abstract

Producing more food for a growing population in the coming decades, while at the same time combating poverty and hunger, is a huge challenge facing African agriculture. The risks that come with climate change make this task more daunting. However, hundreds of thousands of rain fed smallholder farmers in Zambia, Malawi, Niger, and Burkina Faso have been shifting to farming systems that are restoring exhausted soils and are increasing food crop yields, household food security, and incomes. This article reviews these experiences, and their broader implications for African food security, as manifestations of Evergreen Agriculture, a fresh approach to achieving food security and environmental resilience. Evergreen Agriculture is defined as the integration of particular tree species into annual food crop systems. The intercropped trees sustain a green cover on the land throughout the year to maintain vegetative soil cover, bolster nutrient supply through nitrogen fixation and nutrient cycling, generate greater quantities of organic matter in soil surface residues, improve soil structure and water infiltration, increase greater direct production of food, fodder, fuel, fiber and income from products produced by the intercropped trees, enhance carbon storage both above-ground and below-ground, and induce more effective conservation of above- and below-ground biodiversity. Four national cases are reviewed where farmers are observed to be applying these principles on a major scale. The first case involves the experience of Zambia, where conservation farming programmes include the cultivation of food crops within an agroforest of the fertilizer tree Faidherbia albida. The second case is that of the Malawi Agroforestry Food Security Programme, which is integrating fertilizer, fodder, fruit, fuel wood, and timber tree production with food crops on small farms on a national scale. The third case is the dramatic expansion of Faidherbia albida agroforests in millet and sorghum production systems throughout Niger via assisted natural regeneration. The fourth case is the development of a unique type of planting pit technology (zai) along with farmer-managed natural regeneration of trees on a substantial scale in Burkina Faso. Lastly, we examine the current outlook for Evergreen Agriculture to be further adapted and scaled-up across the African continent.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Notes

  1. Comité Inter-Etate pour la Lutte contre la Sécheresse au Sahel

  2. Common Market for Eastern & Southern Africa

  3. The Economic Community Of West African States

  4. The East African Community

References

  • Aagard, P. (2009). Conservation Farming Unit, Lusaka, Zambia. Personal communication

  • Abdulai, A., Barret, C. B. Hazell, P. (2004). Food aid for market development in sub-Saharan Africa. DSGD discussion paper No. 5. Development Strategy and Governance Division International Food Policy Research Institute (IFPRI). Washington, D.C. 20006 U.S.A. 56 p.

  • Adam, T., Abdoulaye, T., Larwanou, M., Yamba, B., Reij, C., Tappan, G. (2006). Plus de gens, plus d’arbres: La transformation des systèmes de production au Niger et les impacts des investissements dans la gestion des ressources naturelles. Rapport de Synthèse Etude Sahel Niger. Comité Permanent Inter-Etats de Lutte contre la Sécheresse dans le Sahel and Université de Niamey, Niamey

  • Ahmed, A., Hill, I., Smith, D., Wisemann, D., Frankernburger, T. (2007). The World’s Most Deprived: Characteristics and causes of extreme hunger and poverty (2020) Discussion Paper 43. International Food Policy Research Institute, Washington

    Google Scholar 

  • Ajayi OC, Place F, Kwesiga P, Mafongoya Franzel S (2005) Impact of Fertilizer Tree Fallows in Eastern Zambia. World Agroforestry Centre, Nairobi, p 28

    Google Scholar 

  • Ajayi OC, Place F, Kwesiga F, Mafongoya P (2007) Impacts of Improved Tree Fallow Technology in Zambia. In: Waibel H, Zilberman D (eds) International Research on Natural Resource Management: advances in impact assessment CABI Wallingford. UK and Science Council/CGIAR, Rome, pp 147–168

    Chapter  Google Scholar 

  • Ajayi CO, Akinnifesi FK, Sileshi G, Kanjipite W (2009) Labour inputs and financial profitability of conventional and agroforestry-based soil fertility management practices in Zambia. Agrekon 48:246–292

    Article  Google Scholar 

  • Akinnifesi FK, Makumba W, Sileshi G, Ajayi OC, Mweta D (2007) Synergistic effect of inorganic N and P fertilizers and organic inputs from Gliricidia sepium on productivity of intercropped maize in Southern Malawi. Plant Soil 294:203–217

    CAS  Article  Google Scholar 

  • Akinnifesi FK, Chirwa PW, Ajayi OC, Sileshi G, Matakala P, Kwesiga FR, Harawa H, Makumba W (2008) Contributions of agroforestry research to livelihood of smallholder farmers in Southern Africa: 1. Taking stock of the adaptation, adoption and impact of fertilizer tree options. Agricultural Journal 3:58–75

    Google Scholar 

  • Akinnifesi FK, Sileshi G, Franzel S, Ajayi OC, Harawa R, Makumba W, Chakeredza S, Mng’omba SA, de Wolf J, Chianu J (2009) On-farm assessment of legume fallows and other fertility management options used by smallholder farmers in southern Malawi. Agricultural Journal 4:260–271

    Google Scholar 

  • Akinnifesi FK, Ajayi OC, Sileshi G, Chirwa PW, Chianu J (2010) Fertilizer tree systems for sustainable food security in the maize-based production systems of East and Southern Africa Region: a review. J Sustain Dev. doi:10.1051/agron/2009058

    Google Scholar 

  • Arnold JE, Dewees PA (1995) Tree Management in Farmer Strategies: Responses to Agricultural Intensification. Oxford UK: Oxford University Press. 304 p. (Paperback edition, 1997, Farms, Trees, and Farmers: Responses to Agricultural Intensification, London: Earthscan)

  • Barnes RD, Fagg CW (2003) Faidherbia albida. Monograph and Annotated Bibliography. Tropical Forestry Papers No 41, Oxford Forestry Institute, Oxford, UK. 281 p

  • Barro A, Zougmoré R, Taonda SJB (2005) Mécanisation de la technique du zaï manuel en zone semi-aride. Cahiers Agricultures 14:549–559

    Google Scholar 

  • Boffa, J. M. (1999). Agroforestry Parklands in sub-Saharan Africa. FAO Conservation Guide 34, Food & Agriculture Organization, Rome. 254 p.

  • Botoni, E. Reij, C. (2009). La transformation silencieuse de l’environnement et des systèmes de production au Sahel: L’impacts des investissements publics et privés dans la gestion des ressources naturelles. Amsterdam, the Netherlands: Comité Permanent Inter-Etats de Lutte Contre la Secheresse dans le Sahel (CILSS) and Vrije University Amsterdam. 175 p.

  • Broekhuyse, J. T. (1983). Transformatie van Mossi land. Amsterdam, the Netherlands: Koninklijk Instituut voor de Tropen.

  • Carr S (1997) A green revolution frustrated: Lessons from the Malawi experience. Afr Crop Sci J 5:93–98

    Google Scholar 

  • Chirwa PW, Ong CK, Maghembe J, Black CR (2007) Soil water dynamics in intercropping systems containing Gliricidia sepium, pigeon pea and maize in southern Malawi. Agroforest Syst 69:29–43

    Article  Google Scholar 

  • Denning G, Kabambe P, Sanchez P, Malik A, Flor R, Harawa R, Nkhoma P, Zamba C, Banda C, Magombo C, Keating M, Wangila J, Sachs J (2009) Input subsidies to improve smallholder maize productivity in Malawi: toward an African green revolution. PLoS Biology 7:2–10

    CAS  Article  Google Scholar 

  • Devereux S (2009) Why does famine persist in Africa? Food Security 1:25–35

    Article  Google Scholar 

  • Devereux S, Maxwell S (eds) (2001) Food Security in Sub-Saharan Africa. ITDG, London

    Google Scholar 

  • Dramé YA, Berti F (2008) Les enjeux socio-économiques autour de l’agroforesterie villageoise à Aguié (Niger). Tropicultura 26:141–149

    Google Scholar 

  • Famine Early Warning Systems Network (2007) Monthly reports (2005–2007). Available: http://www.fews.net/Pages/country. Accessed 17 December 2008.

  • Food & Agriculture Organization (2007) The state of food and agriculture. United Nations Food & Agriculture Organization, Rome

    Google Scholar 

  • Food & Agriculture Organization of the United Nations (2008). FAOSTAT database. Production: Crops. Available: http://faostat.fao.org/site/567/default.aspx. Accessed 18 December 2008.

  • Funk CC, Brown ME (2009) Declining global per capita agricultural production and warming oceans threaten food security. Food Security 1:271–289

    Article  Google Scholar 

  • Garrity DP (2004) Agroforestry and the achievement of the millennium development goals. Agroforest Syst 61:5–17

    Article  Google Scholar 

  • Garrity, D. P. (2010). Hope is Evergreen. Our Planet May: 28–30.

  • Garrity D, Verchot L (2008) Meeting Challenges of Climate Change and Poverty through Agroforestry. World Agroforestry Centre, Nairobi, p 8

    Google Scholar 

  • GEF (Global Environment Facility) (2003). What Kind of World? The challenge of land degradation. Global Environment Facility (GEF), p. 4.

  • Hadgu, K. M. (2008). Temporal and spatial changes in land use patterns and biodiversity in relation to farm productivity at multiple scales in Tigray, Ethiopia. PhD dissertation, Wageningen University, Netherlands. 174 p

  • Haggblade, S., & Tembo, G. (2003). Early Evidence on Conservation Farming in Zambia. EPTD Discussion Paper 108. Washington DC: International Food Policy Research Institute.

  • Jones PG, Thornton PK (2003) The potential impacts of climate change in tropical agriculture: the case of maize in Africa and Latin America in 2055. Glob Environ Change 13:51–59

    Article  Google Scholar 

  • Kaboré, D., Reij, C. (2004). The emergence and spread of an improved traditional soil and water conservation practice in Burkina Faso. Environment and Production Technology Division Working Paper No. 114. Washington, DC: International Food Policy Research Institute. 338 p.

  • Kandji ST, Verchot L, Mackensen J (2006) Climate change and variability in Southern Africa: impacts and adaptation in the agricultural sector. ICRAF/UNEP, Nairobi, p 36

    Google Scholar 

  • Kaonga M, Bayliss-Smith TP (2008) Carbon pools in tree biomass and the soil in improved fallows in eastern Zambia. Agroforest Syst 76:37–51

    Article  Google Scholar 

  • Katanga R, Kabwe G, Kuntashula E, Mafongoya PL, Phiri S (2007) Assessing Farmer Innovations in Agroforestry in Eastern Zambia. J Agr Educ Ext 13:117–129

    Article  Google Scholar 

  • Kumar BM, Nair PKR (2006) Tropical Homegardens. Springer, Dordrecht, p 377

    Book  Google Scholar 

  • Kwesiga F, Coe R (1994) Potential of short-rotation Sesbania fallows in eastern Zambia. For Ecol Manage 64:161–170

    Article  Google Scholar 

  • Kwesiga F, Akinnifesi FK, Mafongoya PL, Mcdermott MH, Agumya A (2003) Agroforestry research and development in southern Africa during 1990s: Review and challenges ahead. Agroforest Syst 53:173–186

    Article  Google Scholar 

  • Kwesiga, et al. (2005). Improved Fallow Practices in Eastern Zambia. EPTD Discussion Paper No. 130. Washington, DC: International Food Policy Research Institute. 285 p.

  • Lal R (2009) Soil degradation as a reason for inadequate human nutrition. Food Security 1:45–58

    Article  Google Scholar 

  • Lal R (2010) Beyond Copenhagen: mitigating climate change and achieving food security through soil carbon sequestration. Food Security 2:169–177

    Article  Google Scholar 

  • Lamb RL (2000) Food crops, exports, and the short-run policy response of agriculture in Africa. Agr Econ 22:271–298

    Article  Google Scholar 

  • Larwanou, M., Adam, T. (2008). Impacts de la régénération naturelle assistée au Niger: Etude de quelques cas dans les Régions de Maradi et Zinder. Synthèse de 11 mémoires d’étudiants de 3ème cycle de l’Université Abdou Moumouni de Niamey, Niger. Photocopy. 49 p.

  • Larwanou, M., Abdoulaye, M., Reij, C. (2006). Etude de la régénération naturelle assistée dans la Région de Zinder (Niger): Une première exploration d’un phénomène spectaculaire. Washington, D.C.: International Resources Group for the U.S. Agency for International Development. 385 p.

  • Mafongoya, P. L., Kuntashula, E., Sileshi, G. (2006). Managing soil fertility and nutrient cycles through fertilizer trees in southern Africa. In: Uphoff N, Ball AS, Fernes E, Herren H, Husson O, Liang M, Palm C, Pretty J, Sanchez P, Sanginga N, Thies J (eds). Biological Approaches to Sustainable Soil Systems, Taylor & Francis, (pp 273–289).

  • Makumba W, Janssen B, Oenema O, Akinnifesi FK, Mweta D, Kwesiga F (2006) The long-term effects of a Gliricidia-maize intercropping system in southern Malawi, on Gliricidia and maize yields, and soil properties. Agric Ecosyst Environ 116:85–92

    Article  Google Scholar 

  • Makumba W, Akinnifesi FK, Janssen B, Oenema O (2007) Long-term impact of a Gliricidia-maize intercropping system on carbon sequestration in southern Malawi. Agric Ecosyst Environ 118:237–243

    CAS  Article  Google Scholar 

  • Matlon PJ (1990) Improving productivity in sorghum and pearl millet in semi-arid Africa. Food Res Inst Stud 22:1–43

    Google Scholar 

  • Matlon PJ, Spencer DS (1984) Increasing food production in Sub-Saharan Africa: environmental problems and inadequate technical solutions. Am J of Agric Econ 66:672–676

    Google Scholar 

  • Monimart M (1989) Femmes du Sahel: La désertification au quotidien. Editions Karthala/Organisation for Economic Cooperation and Development Club du Sahel, Paris, p 263

    Google Scholar 

  • Neufeldt, H., Wilkes, A., Zomer, R. J., Xu, J., Nang’ole, E., Munster, C., Place, F. (2009). Trees on farms: Tackling the triple challenges of mitigation, adaptation and food security. World Agroforestry Centre Policy Brief 07. Nairobi, Kenya: World Agroforestry Centre.

  • Phombeya, H. S. K. (1999). Nutrient sourcing and recycling by Faidherbia albida trees in Malawi. PhD Dissertation, Wye College, University of London. 219 p

  • Phombeya H (2009) MAFE Land Resource Centre, Lilongwe. Malawi, Personal Communication

    Google Scholar 

  • Place, F., Adato, M., Hebinck, P., Omosa, M. (2005). The impact of agroforestry-based soil fertility replenishment practices on the poor in Western Kenya. Research Report 142. Washington, D.C.: International Food Policy Research Institute and World Agroforestry Centre.

  • Pye-Smith C (2008) Farming Trees, Banishing Hunger: How an agroforestry programme is helping smallholders in Malawi to grow more food and improve their livelihoods. World Agroforestry Centre, Nairobi, p 27

    Google Scholar 

  • Reij, C. (1983). L’évolution de la lutte anti-érosive en Haute Volta: Vers une plus grande participation de la population. Institute for Environmental Studies, Vrije University, Amsterdam, the Netherlands.

  • Reij C, Thiombiano T (2003) Développement rural et environnement au Burkina Faso: La réhabilitation de la capacité productive des terroirs sur la partie nord du Plateau Central entre 1980 et 2001. Ambassade des Pays-Bas, German Agency for Technical Cooperation- PATECORE, and U.S. Agency for International Development, Ouagadougou

    Google Scholar 

  • Reij, C., Tappan, G., Smale, M. (2009). Agroenvironmental Transformation in the Sahel: Another Kind of “Green Revolution”. IFPRI Discussion Paper 00914. Washington DC: International Food Policy Research Institute.

  • Republic of Malawi (2008). Malawi poverty and vulnerability assessment: Investing in our future. Volume II: June draft for discussion. Lilongwe: Republic of Malawi and World Bank. Available: http://www.aec.msu.edu/fs2/mgt/caadp/malawi_pva_draft_052606_final_draft.pdf. Accessed 17 December 2008.

  • Rhoades C (1995) Seasonal pattern of nitrogen mineralization and soil moisture beneath Faidherbia albida (syn Acacia albida) in central Malawi. Agrofor Sys 29:133–145

    Article  Google Scholar 

  • Saka AR, Bunderson WT, Itimu OA, Phombeya HSK, Mbekeani Y (1994) The effects of Acacia albida on soils and maize grain yields under smallholder farm conditions in Malawi. For Ecol Manag 64:217–230

    Article  Google Scholar 

  • Sanchez, P. A. (1994). Tropical soil fertility research: Towards the second paradigm. P. 65–88. In Inaugural and state of the art conferences. Transactions 15th World Congress of Soil Science. Acapulco, Mexico.

  • Sanchez P (2002) Soil fertility and hunger in Africa. Science 295:2019–2020

    CAS  Article  PubMed  Google Scholar 

  • Sanchez PA, Swaminathan MS (2005) Cutting world hunger in half. Science 307:357–359

    CAS  Article  PubMed  Google Scholar 

  • Sanginga N, Woomer PL (2009) Integrated soil fertility management in Africa: principles, practices, and developmental processes. TSBF-CIAT, Nairobi, p 263

    Google Scholar 

  • Scherr S, McNeely J (2009) Farming with Nature: The Science and Practice of Ecoagriculture. Island, Chicago, 473 p.

    Google Scholar 

  • Schmidhuber J, Tubiello FN (2007) Global food security under climate change. Proc Natl Acad Sci 104:19703–19708

    CAS  Article  PubMed  Google Scholar 

  • Scoones, I., Toulmin, C. (1999). Policies for soil fertility management in Africa. A report prepared for the Department for International Development (DFID). IDS, Brighton/IIED, Edinburgh. 128 p.

  • SEI (Stockholm Environment Institute) (2005). Sustainable pathways to attain the millennium development goals—assessing the role of water, energy and sanitation. Research report prepared for the UN World Summit, 14 September, 2005, New York. Stockholm Environment Institute, Stockholm http://www.sei.se/mdg.htm

  • Shepherd KD, Walsh MD (2007) Infrared spectroscopy – enabling an evidence-based diagnostic surveillance approach to agricultural and environmental management in developing countries. J Near Infrared Spectrosc 15:1–19

    CAS  Article  Google Scholar 

  • Sileshi G, Mafongoya PL (2006) Long-term effect of legume-improved fallows on soil invertebrates and maize yield in eastern Zambia. Agric Ecosyst Environ 115:69–78

    Article  Google Scholar 

  • Sileshi G, Kuntashula E, Mafongoya PL (2006) Legume improved fallows reduce weed problems in maize in eastern Zambia. Zambian Journal Agric Sci 8:6–12

    Google Scholar 

  • Sileshi G, Akinnifesi FK, Ajayi OC, Place F (2008) Meta-analysis of maize yield response to woody and herbaceous legumes in the sub-Saharan Africa. Plant Soil 307:1–19

    CAS  Article  Google Scholar 

  • Sileshi G, Akinnifesi FK, Debusho LK, Beedy T, Ajayi OC, Mng’omba S (2010) Variation in maize yield gaps with plant nutrient inputs, soil type and climate across sub-Saharan Africa. Field Crops Res 116:1–13

    Article  Google Scholar 

  • Smith, G. (2009). http://www.alertnet.org/db/an_art/60167/2009/10/17-113135-1.htm.

  • Snapp SS, Mafongoya PL, Waddington S (1998) Organic matter technologies for integrated nutrient management in smallholder cropping systems of southern Africa. Agric Ecosyst Environ 71:185–200

    Article  Google Scholar 

  • Swift, M. J., Shepherd, K. D., (eds). (2007). Saving Africa’s Soils: Science and Technology for Improved Soil Management in Africa. Nairobi: World Agroforestry Centre. http://worldagroforestry.org/Library/listdetails.asp?id=49775

  • Syampungani S, Chirwa PW, Akinnifesi FK, Ajayi OC (2010) The potential of using agroforestry as a win-win solution to climate change mitigation and adaptation and meeting food security challenges in Southern Africa. Agr J 5:80–88

    Google Scholar 

  • Tougiani A, Guero C, Rinaudo T (2009) Community mobilisation for improved livelihoods through tree crop management in Niger. GeoJournal 74:377–389

    Article  Google Scholar 

  • Tripp R (2005) The performance of low external input technology in agricultural development: a summary of three case studies. Int J Agric Sustain 3:143–153

    Google Scholar 

  • UNEP/ISRIC. (1991). World Map of the Status of Human-Induced Soil Degradation (GLASOD). An Explanatory Note (2nd ed.). UNEP, Nairobi, Kenya, and ISRIC, Wageningen, Netherlands

  • United Nations. (2004). World Population to 2300. Department of Economic and Social Affairs/Population Division, New York: United Nations Secretariat. 254 p.

  • WRI (World Resources Institute) (2008). Turning back the desert: How farmers have transformed Niger’s landscapes and livelihoods. In Roots of resilience: Growing the wealth of the poor. Washington, D.C.: World Resources Institute.

  • Zomer, R. J., Trabucco, A., Coe, R., Place, F. (2009). Trees on Farm: Analysis of Global Extent and Geographical Patterns of Agroforestry. Nairobi: World Agroforestry Centre, ICRAF Working Paper No 89.

Download references

Acknowledgement

The authors gratefully acknowledge the financial and in-kind support provided for this work by the Governments of Malawi, Zambia, Niger and Burkina Faso, the Governments of Australia, Canada, Denmark, Finland, Germany, Ireland, Japan, Norway, Sweden, United Kingdom, and the United States, by the International Fund for Agricultural Development, and by the Rockefeller and Bill and Melinda Gates Foundation.

For updated current information

World Agroforestry Centre web site: http://www.worldagroforestry.org/af/index.php

African Conservation Tillage Network web site: http://www.act.org.zw/ Conservation Farming Unit web site: http://www.conservationagriculture.org/

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis Philip Garrity.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Garrity, D.P., Akinnifesi, F.K., Ajayi, O.C. et al. Evergreen Agriculture: a robust approach to sustainable food security in Africa. Food Sec. 2, 197–214 (2010). https://doi.org/10.1007/s12571-010-0070-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12571-010-0070-7

Keywords

  • Agroforestry
  • Burkina faso
  • Climate change adaptation and mitigation
  • Conservation farming
  • Evergreen Agriculture
  • Faidherbia albida
  • Fertilizer trees
  • Malawi
  • Niger
  • Soil carbon
  • Zambia