Food Security

, Volume 2, Issue 3, pp 197–214 | Cite as

Evergreen Agriculture: a robust approach to sustainable food security in Africa

  • Dennis Philip Garrity
  • Festus K. Akinnifesi
  • Oluyede C. Ajayi
  • Sileshi G. Weldesemayat
  • Jeremias G. Mowo
  • Antoine Kalinganire
  • Mahamane Larwanou
  • Jules Bayala
Original Paper

Abstract

Producing more food for a growing population in the coming decades, while at the same time combating poverty and hunger, is a huge challenge facing African agriculture. The risks that come with climate change make this task more daunting. However, hundreds of thousands of rain fed smallholder farmers in Zambia, Malawi, Niger, and Burkina Faso have been shifting to farming systems that are restoring exhausted soils and are increasing food crop yields, household food security, and incomes. This article reviews these experiences, and their broader implications for African food security, as manifestations of Evergreen Agriculture, a fresh approach to achieving food security and environmental resilience. Evergreen Agriculture is defined as the integration of particular tree species into annual food crop systems. The intercropped trees sustain a green cover on the land throughout the year to maintain vegetative soil cover, bolster nutrient supply through nitrogen fixation and nutrient cycling, generate greater quantities of organic matter in soil surface residues, improve soil structure and water infiltration, increase greater direct production of food, fodder, fuel, fiber and income from products produced by the intercropped trees, enhance carbon storage both above-ground and below-ground, and induce more effective conservation of above- and below-ground biodiversity. Four national cases are reviewed where farmers are observed to be applying these principles on a major scale. The first case involves the experience of Zambia, where conservation farming programmes include the cultivation of food crops within an agroforest of the fertilizer tree Faidherbia albida. The second case is that of the Malawi Agroforestry Food Security Programme, which is integrating fertilizer, fodder, fruit, fuel wood, and timber tree production with food crops on small farms on a national scale. The third case is the dramatic expansion of Faidherbia albida agroforests in millet and sorghum production systems throughout Niger via assisted natural regeneration. The fourth case is the development of a unique type of planting pit technology (zai) along with farmer-managed natural regeneration of trees on a substantial scale in Burkina Faso. Lastly, we examine the current outlook for Evergreen Agriculture to be further adapted and scaled-up across the African continent.

Keywords

Agroforestry Burkina faso Climate change adaptation and mitigation Conservation farming Evergreen Agriculture Faidherbia albida Fertilizer trees Malawi Niger Soil carbon Zambia 

References

  1. Aagard, P. (2009). Conservation Farming Unit, Lusaka, Zambia. Personal communicationGoogle Scholar
  2. Abdulai, A., Barret, C. B. Hazell, P. (2004). Food aid for market development in sub-Saharan Africa. DSGD discussion paper No. 5. Development Strategy and Governance Division International Food Policy Research Institute (IFPRI). Washington, D.C. 20006 U.S.A. 56 p.Google Scholar
  3. Adam, T., Abdoulaye, T., Larwanou, M., Yamba, B., Reij, C., Tappan, G. (2006). Plus de gens, plus d’arbres: La transformation des systèmes de production au Niger et les impacts des investissements dans la gestion des ressources naturelles. Rapport de Synthèse Etude Sahel Niger. Comité Permanent Inter-Etats de Lutte contre la Sécheresse dans le Sahel and Université de Niamey, NiameyGoogle Scholar
  4. Ahmed, A., Hill, I., Smith, D., Wisemann, D., Frankernburger, T. (2007). The World’s Most Deprived: Characteristics and causes of extreme hunger and poverty (2020) Discussion Paper 43. International Food Policy Research Institute, WashingtonGoogle Scholar
  5. Ajayi OC, Place F, Kwesiga P, Mafongoya Franzel S (2005) Impact of Fertilizer Tree Fallows in Eastern Zambia. World Agroforestry Centre, Nairobi, p 28Google Scholar
  6. Ajayi OC, Place F, Kwesiga F, Mafongoya P (2007) Impacts of Improved Tree Fallow Technology in Zambia. In: Waibel H, Zilberman D (eds) International Research on Natural Resource Management: advances in impact assessment CABI Wallingford. UK and Science Council/CGIAR, Rome, pp 147–168CrossRefGoogle Scholar
  7. Ajayi CO, Akinnifesi FK, Sileshi G, Kanjipite W (2009) Labour inputs and financial profitability of conventional and agroforestry-based soil fertility management practices in Zambia. Agrekon 48:246–292CrossRefGoogle Scholar
  8. Akinnifesi FK, Makumba W, Sileshi G, Ajayi OC, Mweta D (2007) Synergistic effect of inorganic N and P fertilizers and organic inputs from Gliricidia sepium on productivity of intercropped maize in Southern Malawi. Plant Soil 294:203–217CrossRefGoogle Scholar
  9. Akinnifesi FK, Chirwa PW, Ajayi OC, Sileshi G, Matakala P, Kwesiga FR, Harawa H, Makumba W (2008) Contributions of agroforestry research to livelihood of smallholder farmers in Southern Africa: 1. Taking stock of the adaptation, adoption and impact of fertilizer tree options. Agricultural Journal 3:58–75Google Scholar
  10. Akinnifesi FK, Sileshi G, Franzel S, Ajayi OC, Harawa R, Makumba W, Chakeredza S, Mng’omba SA, de Wolf J, Chianu J (2009) On-farm assessment of legume fallows and other fertility management options used by smallholder farmers in southern Malawi. Agricultural Journal 4:260–271Google Scholar
  11. Akinnifesi FK, Ajayi OC, Sileshi G, Chirwa PW, Chianu J (2010) Fertilizer tree systems for sustainable food security in the maize-based production systems of East and Southern Africa Region: a review. J Sustain Dev. doi:10.1051/agron/2009058 Google Scholar
  12. Arnold JE, Dewees PA (1995) Tree Management in Farmer Strategies: Responses to Agricultural Intensification. Oxford UK: Oxford University Press. 304 p. (Paperback edition, 1997, Farms, Trees, and Farmers: Responses to Agricultural Intensification, London: Earthscan)Google Scholar
  13. Barnes RD, Fagg CW (2003) Faidherbia albida. Monograph and Annotated Bibliography. Tropical Forestry Papers No 41, Oxford Forestry Institute, Oxford, UK. 281 pGoogle Scholar
  14. Barro A, Zougmoré R, Taonda SJB (2005) Mécanisation de la technique du zaï manuel en zone semi-aride. Cahiers Agricultures 14:549–559Google Scholar
  15. Boffa, J. M. (1999). Agroforestry Parklands in sub-Saharan Africa. FAO Conservation Guide 34, Food & Agriculture Organization, Rome. 254 p.Google Scholar
  16. Botoni, E. Reij, C. (2009). La transformation silencieuse de l’environnement et des systèmes de production au Sahel: L’impacts des investissements publics et privés dans la gestion des ressources naturelles. Amsterdam, the Netherlands: Comité Permanent Inter-Etats de Lutte Contre la Secheresse dans le Sahel (CILSS) and Vrije University Amsterdam. 175 p.Google Scholar
  17. Broekhuyse, J. T. (1983). Transformatie van Mossi land. Amsterdam, the Netherlands: Koninklijk Instituut voor de Tropen.Google Scholar
  18. Carr S (1997) A green revolution frustrated: Lessons from the Malawi experience. Afr Crop Sci J 5:93–98Google Scholar
  19. Chirwa PW, Ong CK, Maghembe J, Black CR (2007) Soil water dynamics in intercropping systems containing Gliricidia sepium, pigeon pea and maize in southern Malawi. Agroforest Syst 69:29–43CrossRefGoogle Scholar
  20. Denning G, Kabambe P, Sanchez P, Malik A, Flor R, Harawa R, Nkhoma P, Zamba C, Banda C, Magombo C, Keating M, Wangila J, Sachs J (2009) Input subsidies to improve smallholder maize productivity in Malawi: toward an African green revolution. PLoS Biology 7:2–10CrossRefGoogle Scholar
  21. Devereux S (2009) Why does famine persist in Africa? Food Security 1:25–35CrossRefGoogle Scholar
  22. Devereux S, Maxwell S (eds) (2001) Food Security in Sub-Saharan Africa. ITDG, LondonGoogle Scholar
  23. Dramé YA, Berti F (2008) Les enjeux socio-économiques autour de l’agroforesterie villageoise à Aguié (Niger). Tropicultura 26:141–149Google Scholar
  24. Famine Early Warning Systems Network (2007) Monthly reports (2005–2007). Available: http://www.fews.net/Pages/country. Accessed 17 December 2008.
  25. Food & Agriculture Organization (2007) The state of food and agriculture. United Nations Food & Agriculture Organization, RomeGoogle Scholar
  26. Food & Agriculture Organization of the United Nations (2008). FAOSTAT database. Production: Crops. Available: http://faostat.fao.org/site/567/default.aspx. Accessed 18 December 2008.
  27. Funk CC, Brown ME (2009) Declining global per capita agricultural production and warming oceans threaten food security. Food Security 1:271–289CrossRefGoogle Scholar
  28. Garrity DP (2004) Agroforestry and the achievement of the millennium development goals. Agroforest Syst 61:5–17CrossRefGoogle Scholar
  29. Garrity, D. P. (2010). Hope is Evergreen. Our Planet May: 28–30.Google Scholar
  30. Garrity D, Verchot L (2008) Meeting Challenges of Climate Change and Poverty through Agroforestry. World Agroforestry Centre, Nairobi, p 8Google Scholar
  31. GEF (Global Environment Facility) (2003). What Kind of World? The challenge of land degradation. Global Environment Facility (GEF), p. 4.Google Scholar
  32. Hadgu, K. M. (2008). Temporal and spatial changes in land use patterns and biodiversity in relation to farm productivity at multiple scales in Tigray, Ethiopia. PhD dissertation, Wageningen University, Netherlands. 174 pGoogle Scholar
  33. Haggblade, S., & Tembo, G. (2003). Early Evidence on Conservation Farming in Zambia. EPTD Discussion Paper 108. Washington DC: International Food Policy Research Institute.Google Scholar
  34. Jones PG, Thornton PK (2003) The potential impacts of climate change in tropical agriculture: the case of maize in Africa and Latin America in 2055. Glob Environ Change 13:51–59CrossRefGoogle Scholar
  35. Kaboré, D., Reij, C. (2004). The emergence and spread of an improved traditional soil and water conservation practice in Burkina Faso. Environment and Production Technology Division Working Paper No. 114. Washington, DC: International Food Policy Research Institute. 338 p.Google Scholar
  36. Kandji ST, Verchot L, Mackensen J (2006) Climate change and variability in Southern Africa: impacts and adaptation in the agricultural sector. ICRAF/UNEP, Nairobi, p 36Google Scholar
  37. Kaonga M, Bayliss-Smith TP (2008) Carbon pools in tree biomass and the soil in improved fallows in eastern Zambia. Agroforest Syst 76:37–51CrossRefGoogle Scholar
  38. Katanga R, Kabwe G, Kuntashula E, Mafongoya PL, Phiri S (2007) Assessing Farmer Innovations in Agroforestry in Eastern Zambia. J Agr Educ Ext 13:117–129CrossRefGoogle Scholar
  39. Kumar BM, Nair PKR (2006) Tropical Homegardens. Springer, Dordrecht, p 377CrossRefGoogle Scholar
  40. Kwesiga F, Coe R (1994) Potential of short-rotation Sesbania fallows in eastern Zambia. For Ecol Manage 64:161–170CrossRefGoogle Scholar
  41. Kwesiga F, Akinnifesi FK, Mafongoya PL, Mcdermott MH, Agumya A (2003) Agroforestry research and development in southern Africa during 1990s: Review and challenges ahead. Agroforest Syst 53:173–186CrossRefGoogle Scholar
  42. Kwesiga, et al. (2005). Improved Fallow Practices in Eastern Zambia. EPTD Discussion Paper No. 130. Washington, DC: International Food Policy Research Institute. 285 p.Google Scholar
  43. Lal R (2009) Soil degradation as a reason for inadequate human nutrition. Food Security 1:45–58CrossRefGoogle Scholar
  44. Lal R (2010) Beyond Copenhagen: mitigating climate change and achieving food security through soil carbon sequestration. Food Security 2:169–177CrossRefGoogle Scholar
  45. Lamb RL (2000) Food crops, exports, and the short-run policy response of agriculture in Africa. Agr Econ 22:271–298CrossRefGoogle Scholar
  46. Larwanou, M., Adam, T. (2008). Impacts de la régénération naturelle assistée au Niger: Etude de quelques cas dans les Régions de Maradi et Zinder. Synthèse de 11 mémoires d’étudiants de 3ème cycle de l’Université Abdou Moumouni de Niamey, Niger. Photocopy. 49 p.Google Scholar
  47. Larwanou, M., Abdoulaye, M., Reij, C. (2006). Etude de la régénération naturelle assistée dans la Région de Zinder (Niger): Une première exploration d’un phénomène spectaculaire. Washington, D.C.: International Resources Group for the U.S. Agency for International Development. 385 p.Google Scholar
  48. Mafongoya, P. L., Kuntashula, E., Sileshi, G. (2006). Managing soil fertility and nutrient cycles through fertilizer trees in southern Africa. In: Uphoff N, Ball AS, Fernes E, Herren H, Husson O, Liang M, Palm C, Pretty J, Sanchez P, Sanginga N, Thies J (eds). Biological Approaches to Sustainable Soil Systems, Taylor & Francis, (pp 273–289).Google Scholar
  49. Makumba W, Janssen B, Oenema O, Akinnifesi FK, Mweta D, Kwesiga F (2006) The long-term effects of a Gliricidia-maize intercropping system in southern Malawi, on Gliricidia and maize yields, and soil properties. Agric Ecosyst Environ 116:85–92CrossRefGoogle Scholar
  50. Makumba W, Akinnifesi FK, Janssen B, Oenema O (2007) Long-term impact of a Gliricidia-maize intercropping system on carbon sequestration in southern Malawi. Agric Ecosyst Environ 118:237–243CrossRefGoogle Scholar
  51. Matlon PJ (1990) Improving productivity in sorghum and pearl millet in semi-arid Africa. Food Res Inst Stud 22:1–43Google Scholar
  52. Matlon PJ, Spencer DS (1984) Increasing food production in Sub-Saharan Africa: environmental problems and inadequate technical solutions. Am J of Agric Econ 66:672–676Google Scholar
  53. Monimart M (1989) Femmes du Sahel: La désertification au quotidien. Editions Karthala/Organisation for Economic Cooperation and Development Club du Sahel, Paris, p 263Google Scholar
  54. Neufeldt, H., Wilkes, A., Zomer, R. J., Xu, J., Nang’ole, E., Munster, C., Place, F. (2009). Trees on farms: Tackling the triple challenges of mitigation, adaptation and food security. World Agroforestry Centre Policy Brief 07. Nairobi, Kenya: World Agroforestry Centre.Google Scholar
  55. Phombeya, H. S. K. (1999). Nutrient sourcing and recycling by Faidherbia albida trees in Malawi. PhD Dissertation, Wye College, University of London. 219 pGoogle Scholar
  56. Phombeya H (2009) MAFE Land Resource Centre, Lilongwe. Malawi, Personal CommunicationGoogle Scholar
  57. Place, F., Adato, M., Hebinck, P., Omosa, M. (2005). The impact of agroforestry-based soil fertility replenishment practices on the poor in Western Kenya. Research Report 142. Washington, D.C.: International Food Policy Research Institute and World Agroforestry Centre.Google Scholar
  58. Pye-Smith C (2008) Farming Trees, Banishing Hunger: How an agroforestry programme is helping smallholders in Malawi to grow more food and improve their livelihoods. World Agroforestry Centre, Nairobi, p 27Google Scholar
  59. Reij, C. (1983). L’évolution de la lutte anti-érosive en Haute Volta: Vers une plus grande participation de la population. Institute for Environmental Studies, Vrije University, Amsterdam, the Netherlands.Google Scholar
  60. Reij C, Thiombiano T (2003) Développement rural et environnement au Burkina Faso: La réhabilitation de la capacité productive des terroirs sur la partie nord du Plateau Central entre 1980 et 2001. Ambassade des Pays-Bas, German Agency for Technical Cooperation- PATECORE, and U.S. Agency for International Development, OuagadougouGoogle Scholar
  61. Reij, C., Tappan, G., Smale, M. (2009). Agroenvironmental Transformation in the Sahel: Another Kind of “Green Revolution”. IFPRI Discussion Paper 00914. Washington DC: International Food Policy Research Institute.Google Scholar
  62. Republic of Malawi (2008). Malawi poverty and vulnerability assessment: Investing in our future. Volume II: June draft for discussion. Lilongwe: Republic of Malawi and World Bank. Available: http://www.aec.msu.edu/fs2/mgt/caadp/malawi_pva_draft_052606_final_draft.pdf. Accessed 17 December 2008.
  63. Rhoades C (1995) Seasonal pattern of nitrogen mineralization and soil moisture beneath Faidherbia albida (syn Acacia albida) in central Malawi. Agrofor Sys 29:133–145CrossRefGoogle Scholar
  64. Saka AR, Bunderson WT, Itimu OA, Phombeya HSK, Mbekeani Y (1994) The effects of Acacia albida on soils and maize grain yields under smallholder farm conditions in Malawi. For Ecol Manag 64:217–230CrossRefGoogle Scholar
  65. Sanchez, P. A. (1994). Tropical soil fertility research: Towards the second paradigm. P. 65–88. In Inaugural and state of the art conferences. Transactions 15th World Congress of Soil Science. Acapulco, Mexico.Google Scholar
  66. Sanchez P (2002) Soil fertility and hunger in Africa. Science 295:2019–2020CrossRefPubMedGoogle Scholar
  67. Sanchez PA, Swaminathan MS (2005) Cutting world hunger in half. Science 307:357–359CrossRefPubMedGoogle Scholar
  68. Sanginga N, Woomer PL (2009) Integrated soil fertility management in Africa: principles, practices, and developmental processes. TSBF-CIAT, Nairobi, p 263Google Scholar
  69. Scherr S, McNeely J (2009) Farming with Nature: The Science and Practice of Ecoagriculture. Island, Chicago, 473 p.Google Scholar
  70. Schmidhuber J, Tubiello FN (2007) Global food security under climate change. Proc Natl Acad Sci 104:19703–19708CrossRefPubMedGoogle Scholar
  71. Scoones, I., Toulmin, C. (1999). Policies for soil fertility management in Africa. A report prepared for the Department for International Development (DFID). IDS, Brighton/IIED, Edinburgh. 128 p.Google Scholar
  72. SEI (Stockholm Environment Institute) (2005). Sustainable pathways to attain the millennium development goals—assessing the role of water, energy and sanitation. Research report prepared for the UN World Summit, 14 September, 2005, New York. Stockholm Environment Institute, Stockholm http://www.sei.se/mdg.htm
  73. Shepherd KD, Walsh MD (2007) Infrared spectroscopy – enabling an evidence-based diagnostic surveillance approach to agricultural and environmental management in developing countries. J Near Infrared Spectrosc 15:1–19CrossRefGoogle Scholar
  74. Sileshi G, Mafongoya PL (2006) Long-term effect of legume-improved fallows on soil invertebrates and maize yield in eastern Zambia. Agric Ecosyst Environ 115:69–78CrossRefGoogle Scholar
  75. Sileshi G, Kuntashula E, Mafongoya PL (2006) Legume improved fallows reduce weed problems in maize in eastern Zambia. Zambian Journal Agric Sci 8:6–12Google Scholar
  76. Sileshi G, Akinnifesi FK, Ajayi OC, Place F (2008) Meta-analysis of maize yield response to woody and herbaceous legumes in the sub-Saharan Africa. Plant Soil 307:1–19CrossRefGoogle Scholar
  77. Sileshi G, Akinnifesi FK, Debusho LK, Beedy T, Ajayi OC, Mng’omba S (2010) Variation in maize yield gaps with plant nutrient inputs, soil type and climate across sub-Saharan Africa. Field Crops Res 116:1–13CrossRefGoogle Scholar
  78. Snapp SS, Mafongoya PL, Waddington S (1998) Organic matter technologies for integrated nutrient management in smallholder cropping systems of southern Africa. Agric Ecosyst Environ 71:185–200CrossRefGoogle Scholar
  79. Swift, M. J., Shepherd, K. D., (eds). (2007). Saving Africa’s Soils: Science and Technology for Improved Soil Management in Africa. Nairobi: World Agroforestry Centre. http://worldagroforestry.org/Library/listdetails.asp?id=49775
  80. Syampungani S, Chirwa PW, Akinnifesi FK, Ajayi OC (2010) The potential of using agroforestry as a win-win solution to climate change mitigation and adaptation and meeting food security challenges in Southern Africa. Agr J 5:80–88Google Scholar
  81. Tougiani A, Guero C, Rinaudo T (2009) Community mobilisation for improved livelihoods through tree crop management in Niger. GeoJournal 74:377–389CrossRefGoogle Scholar
  82. Tripp R (2005) The performance of low external input technology in agricultural development: a summary of three case studies. Int J Agric Sustain 3:143–153Google Scholar
  83. UNEP/ISRIC. (1991). World Map of the Status of Human-Induced Soil Degradation (GLASOD). An Explanatory Note (2nd ed.). UNEP, Nairobi, Kenya, and ISRIC, Wageningen, NetherlandsGoogle Scholar
  84. United Nations. (2004). World Population to 2300. Department of Economic and Social Affairs/Population Division, New York: United Nations Secretariat. 254 p.Google Scholar
  85. WRI (World Resources Institute) (2008). Turning back the desert: How farmers have transformed Niger’s landscapes and livelihoods. In Roots of resilience: Growing the wealth of the poor. Washington, D.C.: World Resources Institute.Google Scholar
  86. Zomer, R. J., Trabucco, A., Coe, R., Place, F. (2009). Trees on Farm: Analysis of Global Extent and Geographical Patterns of Agroforestry. Nairobi: World Agroforestry Centre, ICRAF Working Paper No 89.Google Scholar

Copyright information

© Springer Science + Business Media B.V. & International Society for Plant Pathology 2010

Authors and Affiliations

  • Dennis Philip Garrity
    • 1
  • Festus K. Akinnifesi
    • 2
  • Oluyede C. Ajayi
    • 2
  • Sileshi G. Weldesemayat
    • 2
  • Jeremias G. Mowo
    • 1
  • Antoine Kalinganire
    • 3
  • Mahamane Larwanou
    • 4
  • Jules Bayala
    • 3
  1. 1.World Agroforestry CentreNairobiKenya
  2. 2.World Agroforestry CentreLilongweMalawi
  3. 3.World Agroforestry CentreBamakoMali
  4. 4.African Forest ForumNairobiKenya

Personalised recommendations