Skip to main content
Log in

Precise in-orbit relative navigation technique for rendezvous mission of CubeSats using only GPS receivers

  • Original Paper
  • Published:
CEAS Space Journal Aims and scope Submit manuscript

Abstract

This paper proposes a global positioning system (GPS) based relative navigation algorithm for CubeSats that perform autonomous rendezvous and docking missions. To realize precise relative navigation using only GPS, an algorithm is developed to improve the differential GPS (DGPS) performance by reducing the integer ambiguity search space of carrier-phase DGPS. To this end, a Hatch filter is used to improve the pseudorange noise performance, and range-domain DGPS-based single-frequency relative navigation is realized. Because GPS measurements are transmitted intermittently using an inter-satellite link, orbit propagation is performed using the Hill–Clohessy–Wiltshire equation. Moreover, to improve the performance of the propagation error accumulated over time, an in-orbit velocity moving average filter is incorporated. Because the rate change of relative motion in the local-vertical-local-horizontal coordinate system on the orbit is small, the noise level for the relative velocity and overall relative navigation system performance are improved. To demonstrate the usefulness of the proposed method, software-in-the-loop simulation and processor-in-the-loop simulation-based real-time implementation is realized on the onboard computer of a reference CubeSat (SNUGLITE-III A, target) and thruster-equipped CubeSat (SNUGLITE-III B, chaser), and their performances are evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

Based on the simulation results presented in Chapter 4.2, we confirmed that our proposed method improved performance by 10% and 31% for two different simulated conditions. As a result, we added the content that demonstrated at least a 10% performance improvement.

References

  1. Capuano, V., Harvard, A., Chung, S.J.: On-board cooperative spacecraft relative navigation fusing GNSS with vision. Progr. Aerosp. Sci. (2022). https://doi.org/10.1016/j.paerosci.2021.100761

    Article  Google Scholar 

  2. Sansone, F., Branz, F., Francesconi, A.: A relative navigation sensor for CubeSats based on LED fiducial markers. Acta Astronaut. 146, 206–215 (2018). https://doi.org/10.1016/j.actaastro.2018.02.028

    Article  Google Scholar 

  3. Du, R., Zhang, X., Zhang, X., Wang, L., Liao, W.: A vision-based relative navigation sensor for on-orbit servicing of CubeSats. In: Proceedings 2021 7th International Conference on Mechanical Engineering and Automation ICMEAS 2021, pp. 27–31. Institute of Electrical and Electronics Engineers Inc (2021)

    Google Scholar 

  4. Roscoe, C.W.T., Westphal, J.J., Mosleh, E.: Overview and GNC design of the CubeSat proximity operations demonstration (CPOD) mission. Acta Astronaut. (2018). https://doi.org/10.1016/j.actaastro.2018.03.033

    Article  Google Scholar 

  5. Opromolla, R., Fasano, G., Rufino, G., Grassi, M.: A review of cooperative and uncooperative spacecraft pose determination techniques for close-proximity operations. Progr. Aerosp. Sci. (2017). https://doi.org/10.1016/j.paerosci.2017.07.001

    Article  Google Scholar 

  6. Madhusudhanarao, M., Kartheek, K., Rajanikanth, M.: Identification of object in 3D flash LIDAR images. International Journal of Machine Intelligence. 3, 91–95 (2011)

    Article  Google Scholar 

  7. Marchand, E., Chaumette, F., Chabot, T., Kanani, K., Pollini, A.: Re-move debris vision-based navigation preliminary results. In: IAC 2019–70th International Astronautical Congress. (2019)

  8. Capuano, V., Harvard, A., Lin, Y., Chung, S.J.: DGNSS-vision integration for robust and accurate relative spacecraft navigation. In: Proceedings of the 32nd International Technical Meeting of the Satellite Division of the Institute of Navigation, ION GNSS+ 2019 (2019)

  9. Chung, S.J., Bandyopadhyay, S., Foust, R., Subramanian, G.P., Hadaegh, F.Y.: Review of formation flying and constellation missions using nanosatellites. J. Spacecr Rockets 53, 567 (2016)

    Article  Google Scholar 

  10. Kahr, E., Roth, N., Montenbruck, O., Risi, B., Zee, R.E.: GPS relative navigation for the CanX-4 and CanX-5 formation-flying nanosatellites. J. Spacecr. Rockets 55, 1545–1558 (2018). https://doi.org/10.2514/1.A34117

    Article  Google Scholar 

  11. Mohiuddin, S., Psiaki, M.L.: Satellite relative navigation using carrier-phase differential GPS with integer ambiguities. In: Collection of Technical Papers - AIAA Guidance, Navigation, and Control Conference (2005)

  12. Montenbruck, O., D’Amico, S., Ardaens, J.S., Wermuth, M.: Carrier phase differential GPS for leo formation flying: the PRISMA and TanDEM-X flight experience. In: Advances in the astronautical sciences. Springer (2012)

    Google Scholar 

  13. Allende-Alba, G., Montenbruck, O., Hackel, S., Tossaint, M.: Relative positioning of formation-flying spacecraft using single-receiver GPS carrier phase ambiguity fixing. GPS Solut. (2018). https://doi.org/10.1007/s10291-018-0734-x

    Article  Google Scholar 

  14. Chan, M., Bultitude, J., Faber, D.: Productization of CubeSat rendezvous and docking solutions. In: 33rd Annual AIAA/USU Conference on Small Satellites, Logan, Utah, USA (2019)

  15. Muri, P., McNair, J.: A survey of communication sub-systems for intersatellite linked systems and cubesat missions. J. Commun. (2012). https://doi.org/10.4304/jcm.7.4.290-308

    Article  Google Scholar 

  16. Popescu, O.: Power budgets for CubeSat radios to support ground communications and inter-satellite links. IEEE Access (2017). https://doi.org/10.1109/ACCESS.2017.2721948

    Article  Google Scholar 

  17. Aslan, S., Krol, K., Peck, M.: Pathfinder for autonomous navigation: a low-cost architecture for autonomous CubeSat rendezvous and docking. In: AIAA Scitech 2021 forum. American Institute of Aeronautics and Astronautics Inc (2021)

    Google Scholar 

  18. Bowen, J., Tsuda, A., Abel, J., Villa, M.: CubeSat Proximity Operations Demonstration (CPOD) mission update. In: IEEE Aerospace Conference Proceedings. IEEE Computer Society (2015)

  19. Pirat, C., Mäusli, P.-A., Walker, R., Ankersen, F., Gass, V.: Guidance, navigation and control for autonomous cooperative docking of CubeSats. Acta Astronaut. 5, 5 (2018). https://doi.org/10.1016/j.actaastro.2018.01.059

    Article  Google Scholar 

  20. Yun-chun, Y., Hatch, R.R., Sharpe, R.T.: Minimizing the integer ambiguity search space for RTK. Wuhan Univ. J. Natl. Sci. (2003). https://doi.org/10.1007/bf02899810

    Article  Google Scholar 

  21. de Jonge, P., Tiberius, C.: Integer Ambiguity Estimation with the Lambda Method. Presented at the (1996)

  22. Kroes, R., Montenbruck, O., Bertiger, W., Visser, P.: Precise GRACE baseline determination using GPS. GPS Solut. (2005). https://doi.org/10.1007/s10291-004-0123-5

    Article  Google Scholar 

  23. Montenbruck, O., Wermuth, M., Kahle, R.: GPS based relative navigation for the Tan DEM-X mission - First flight results. Navig. J. Instit. Navig. (2011). https://doi.org/10.1002/j.2161-4296.2011.tb02587.x

    Article  Google Scholar 

  24. Lee, E., Son, J., Park, S.Y.: Relative navigation technique with constrained GNSS data for formation-flying CubeSat mission, CANYVAL-C. Navigat. J. Inst. Navig. 68, 559–575 (2021). https://doi.org/10.1002/navi.439

    Article  Google Scholar 

  25. Pesce, V., Silvestrini, S., Lavagna, M.: Radial basis function neural network aided adaptive extended Kalman filter for spacecraft relative navigation. Aerosp. Sci. Technol. (2020). https://doi.org/10.1016/j.ast.2019.105527

    Article  Google Scholar 

  26. Kawano, I., Mokuno, M., Kasai, T., Suzuki, T.: First autonomous rendezvous using relative GPS navigation by ETS-VII. Navig. J. Instit. Navig. (2001). https://doi.org/10.1002/j.2161-4296.2001.tb00227.x

    Article  Google Scholar 

  27. Brown, R.G., Hwang, P.Y.C.: Introduction to Random Signals and Applied Kalman Filtering. (1997)

  28. Yoon, D., Kee, C., Seo, J., Park, B.: Position accuracy improvement by implementing the DGNSS-CP algorithm in smartphones. Sensors (Switzerland) (2016). https://doi.org/10.3390/s16060910

    Article  Google Scholar 

  29. Kaplan, E.D., Hegarty, C.J.: Understanding GPS/GNSS Principles and Applications. (2017)

  30. Enge, P., Parkinson, B., Spilker, J., Jr., Axelrad, P.: Global positioning system: theory and applications, 2-volume set. American Institute of Aeronautics and Astronautics (1996)

    Book  Google Scholar 

  31. Radhakrishnan, R., Edmonson, W.W., Afghah, F., Rodriguez-Osorio, R.M., Pinto, F., Burleigh, S.C.: Survey of inter-satellite communication for small satellite systems: physical layer to network layer view. IEEE Commun. Surv. Tutor. 18, 2442 (2016)

    Article  Google Scholar 

  32. Park, B., Lim, C., Yun, Y., Kim, E., Kee, C.: Optimal divergence-free hatch filter for GNSS single-frequency measurement. Sensors (Switzerland) (2017). https://doi.org/10.3390/s17030448

    Article  Google Scholar 

  33. Park, B., Sohn, K., Kee, C.: Optimal hatch filter with an adaptive smoothing window width. J. Navig. (2008). https://doi.org/10.1017/S0373463308004694

    Article  Google Scholar 

  34. Vallado, D., McClain, W.: Fundamentals of astrodynamics and applications. Space Technology Library. Microcosm Press & Kluwer Academic Publishers (2007)

    Google Scholar 

  35. Clohessy, W.H., Wiltshire, R.S.: Terminal guidance system for satellite rendezvous. J. Aerosp. Sci. (1960). https://doi.org/10.2514/8.8704

    Article  Google Scholar 

  36. Smith, S.W.: Properties of convolution: the scientist and engineer’s guide to digital signal processing. (1999)

Download references

Acknowledgements

This work is supported by a Korea Agency for Infrastructure Technology Advancement (KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (Grant 21CTAP-C164137-01), contracted through by the Institute of Advanced Machines and Design at Seoul National University. This research was supported (in part) by the Institute of Advanced Aerospace Technology at Seoul National University. The Institute of Engineering Research at Seoul National University provided research facilities for this work. Additionally, the initial version of this work was presented at the KSAS-CEAS special session at the Korean Society for Aeronautical and Space Sciences (KSAS) 2022 Fall Conference. The authors would like to thank all parties involved for their valuable contributions to this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changdon Kee.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shim, H., Kim, OJ., Yu, S. et al. Precise in-orbit relative navigation technique for rendezvous mission of CubeSats using only GPS receivers. CEAS Space J 16, 117–137 (2024). https://doi.org/10.1007/s12567-023-00488-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12567-023-00488-x

Keywords

Navigation